| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mdetunilem4 | Structured version Visualization version Unicode version | ||
| Description: Lemma for mdetuni 20428. (Contributed by SO, 15-Jul-2018.) |
| Ref | Expression |
|---|---|
| mdetuni.a |
|
| mdetuni.b |
|
| mdetuni.k |
|
| mdetuni.0g |
|
| mdetuni.1r |
|
| mdetuni.pg |
|
| mdetuni.tg |
|
| mdetuni.n |
|
| mdetuni.r |
|
| mdetuni.ff |
|
| mdetuni.al |
|
| mdetuni.li |
|
| mdetuni.sc |
|
| Ref | Expression |
|---|---|
| mdetunilem4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp32 1098 |
. 2
| |
| 2 | simp33 1099 |
. 2
| |
| 3 | simp1 1061 |
. . 3
| |
| 4 | simp23 1096 |
. . . 4
| |
| 5 | simp3 1063 |
. . . 4
| |
| 6 | simp21 1094 |
. . . . 5
| |
| 7 | simp22 1095 |
. . . . 5
| |
| 8 | mdetuni.sc |
. . . . . 6
| |
| 9 | 8 | 3ad2ant1 1082 |
. . . . 5
|
| 10 | reseq1 5390 |
. . . . . . . . . 10
| |
| 11 | 10 | eqeq1d 2624 |
. . . . . . . . 9
|
| 12 | reseq1 5390 |
. . . . . . . . . 10
| |
| 13 | 12 | eqeq1d 2624 |
. . . . . . . . 9
|
| 14 | 11, 13 | anbi12d 747 |
. . . . . . . 8
|
| 15 | fveq2 6191 |
. . . . . . . . 9
| |
| 16 | 15 | eqeq1d 2624 |
. . . . . . . 8
|
| 17 | 14, 16 | imbi12d 334 |
. . . . . . 7
|
| 18 | 17 | 2ralbidv 2989 |
. . . . . 6
|
| 19 | sneq 4187 |
. . . . . . . . . . . 12
| |
| 20 | 19 | xpeq2d 5139 |
. . . . . . . . . . 11
|
| 21 | 20 | oveq1d 6665 |
. . . . . . . . . 10
|
| 22 | 21 | eqeq2d 2632 |
. . . . . . . . 9
|
| 23 | 22 | anbi1d 741 |
. . . . . . . 8
|
| 24 | oveq1 6657 |
. . . . . . . . 9
| |
| 25 | 24 | eqeq2d 2632 |
. . . . . . . 8
|
| 26 | 23, 25 | imbi12d 334 |
. . . . . . 7
|
| 27 | 26 | 2ralbidv 2989 |
. . . . . 6
|
| 28 | 18, 27 | rspc2va 3323 |
. . . . 5
|
| 29 | 6, 7, 9, 28 | syl21anc 1325 |
. . . 4
|
| 30 | reseq1 5390 |
. . . . . . . . 9
| |
| 31 | 30 | oveq2d 6666 |
. . . . . . . 8
|
| 32 | 31 | eqeq2d 2632 |
. . . . . . 7
|
| 33 | reseq1 5390 |
. . . . . . . 8
| |
| 34 | 33 | eqeq2d 2632 |
. . . . . . 7
|
| 35 | 32, 34 | anbi12d 747 |
. . . . . 6
|
| 36 | fveq2 6191 |
. . . . . . . 8
| |
| 37 | 36 | oveq2d 6666 |
. . . . . . 7
|
| 38 | 37 | eqeq2d 2632 |
. . . . . 6
|
| 39 | 35, 38 | imbi12d 334 |
. . . . 5
|
| 40 | sneq 4187 |
. . . . . . . . . 10
| |
| 41 | 40 | xpeq1d 5138 |
. . . . . . . . 9
|
| 42 | 41 | reseq2d 5396 |
. . . . . . . 8
|
| 43 | 41 | xpeq1d 5138 |
. . . . . . . . 9
|
| 44 | 41 | reseq2d 5396 |
. . . . . . . . 9
|
| 45 | 43, 44 | oveq12d 6668 |
. . . . . . . 8
|
| 46 | 42, 45 | eqeq12d 2637 |
. . . . . . 7
|
| 47 | 40 | difeq2d 3728 |
. . . . . . . . . 10
|
| 48 | 47 | xpeq1d 5138 |
. . . . . . . . 9
|
| 49 | 48 | reseq2d 5396 |
. . . . . . . 8
|
| 50 | 48 | reseq2d 5396 |
. . . . . . . 8
|
| 51 | 49, 50 | eqeq12d 2637 |
. . . . . . 7
|
| 52 | 46, 51 | anbi12d 747 |
. . . . . 6
|
| 53 | 52 | imbi1d 331 |
. . . . 5
|
| 54 | 39, 53 | rspc2va 3323 |
. . . 4
|
| 55 | 4, 5, 29, 54 | syl21anc 1325 |
. . 3
|
| 56 | 3, 55 | syl3an3 1361 |
. 2
|
| 57 | 1, 2, 56 | mp2and 715 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-res 5126 df-iota 5851 df-fv 5896 df-ov 6653 |
| This theorem is referenced by: mdetuni0 20427 |
| Copyright terms: Public domain | W3C validator |