MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetunilem4 Structured version   Visualization version   Unicode version

Theorem mdetunilem4 20421
Description: Lemma for mdetuni 20428. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
mdetuni.a  |-  A  =  ( N Mat  R )
mdetuni.b  |-  B  =  ( Base `  A
)
mdetuni.k  |-  K  =  ( Base `  R
)
mdetuni.0g  |-  .0.  =  ( 0g `  R )
mdetuni.1r  |-  .1.  =  ( 1r `  R )
mdetuni.pg  |-  .+  =  ( +g  `  R )
mdetuni.tg  |-  .x.  =  ( .r `  R )
mdetuni.n  |-  ( ph  ->  N  e.  Fin )
mdetuni.r  |-  ( ph  ->  R  e.  Ring )
mdetuni.ff  |-  ( ph  ->  D : B --> K )
mdetuni.al  |-  ( ph  ->  A. x  e.  B  A. y  e.  N  A. z  e.  N  ( ( y  =/=  z  /\  A. w  e.  N  ( y
x w )  =  ( z x w ) )  ->  ( D `  x )  =  .0.  ) )
mdetuni.li  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( y  |`  ( { w }  X.  N ) )  oF  .+  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( y  |`  ( ( N  \  { w } )  X.  N ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( ( D `  y
)  .+  ( D `  z ) ) ) )
mdetuni.sc  |-  ( ph  ->  A. x  e.  B  A. y  e.  K  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( y  .x.  ( D `
 z ) ) ) )
Assertion
Ref Expression
mdetunilem4  |-  ( (
ph  /\  ( E  e.  B  /\  F  e.  K  /\  G  e.  B )  /\  ( H  e.  N  /\  ( E  |`  ( { H }  X.  N
) )  =  ( ( ( { H }  X.  N )  X. 
{ F } )  oF  .x.  ( G  |`  ( { H }  X.  N ) ) )  /\  ( E  |`  ( ( N  \  { H } )  X.  N ) )  =  ( G  |`  (
( N  \  { H } )  X.  N
) ) ) )  ->  ( D `  E )  =  ( F  .x.  ( D `
 G ) ) )
Distinct variable groups:    ph, x, y, z, w    x, B, y, z, w    x, K, y, z, w    x, N, y, z, w    x, D, y, z, w    x,  .x. , y, z, w    x,  .+ , y, z, w    x,  .0. , y, z, w    x,  .1. , y, z, w    x, R, y, z, w    x, A, y, z, w    x, E, y, z, w    x, F, y, z, w    x, G, y, z, w    x, H, y, z, w

Proof of Theorem mdetunilem4
StepHypRef Expression
1 simp32 1098 . 2  |-  ( (
ph  /\  ( E  e.  B  /\  F  e.  K  /\  G  e.  B )  /\  ( H  e.  N  /\  ( E  |`  ( { H }  X.  N
) )  =  ( ( ( { H }  X.  N )  X. 
{ F } )  oF  .x.  ( G  |`  ( { H }  X.  N ) ) )  /\  ( E  |`  ( ( N  \  { H } )  X.  N ) )  =  ( G  |`  (
( N  \  { H } )  X.  N
) ) ) )  ->  ( E  |`  ( { H }  X.  N ) )  =  ( ( ( { H }  X.  N
)  X.  { F } )  oF  .x.  ( G  |`  ( { H }  X.  N ) ) ) )
2 simp33 1099 . 2  |-  ( (
ph  /\  ( E  e.  B  /\  F  e.  K  /\  G  e.  B )  /\  ( H  e.  N  /\  ( E  |`  ( { H }  X.  N
) )  =  ( ( ( { H }  X.  N )  X. 
{ F } )  oF  .x.  ( G  |`  ( { H }  X.  N ) ) )  /\  ( E  |`  ( ( N  \  { H } )  X.  N ) )  =  ( G  |`  (
( N  \  { H } )  X.  N
) ) ) )  ->  ( E  |`  ( ( N  \  { H } )  X.  N ) )  =  ( G  |`  (
( N  \  { H } )  X.  N
) ) )
3 simp1 1061 . . 3  |-  ( ( H  e.  N  /\  ( E  |`  ( { H }  X.  N
) )  =  ( ( ( { H }  X.  N )  X. 
{ F } )  oF  .x.  ( G  |`  ( { H }  X.  N ) ) )  /\  ( E  |`  ( ( N  \  { H } )  X.  N ) )  =  ( G  |`  (
( N  \  { H } )  X.  N
) ) )  ->  H  e.  N )
4 simp23 1096 . . . 4  |-  ( (
ph  /\  ( E  e.  B  /\  F  e.  K  /\  G  e.  B )  /\  H  e.  N )  ->  G  e.  B )
5 simp3 1063 . . . 4  |-  ( (
ph  /\  ( E  e.  B  /\  F  e.  K  /\  G  e.  B )  /\  H  e.  N )  ->  H  e.  N )
6 simp21 1094 . . . . 5  |-  ( (
ph  /\  ( E  e.  B  /\  F  e.  K  /\  G  e.  B )  /\  H  e.  N )  ->  E  e.  B )
7 simp22 1095 . . . . 5  |-  ( (
ph  /\  ( E  e.  B  /\  F  e.  K  /\  G  e.  B )  /\  H  e.  N )  ->  F  e.  K )
8 mdetuni.sc . . . . . 6  |-  ( ph  ->  A. x  e.  B  A. y  e.  K  A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( y  .x.  ( D `
 z ) ) ) )
983ad2ant1 1082 . . . . 5  |-  ( (
ph  /\  ( E  e.  B  /\  F  e.  K  /\  G  e.  B )  /\  H  e.  N )  ->  A. x  e.  B  A. y  e.  K  A. z  e.  B  A. w  e.  N  ( (
( x  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( y  .x.  ( D `
 z ) ) ) )
10 reseq1 5390 . . . . . . . . . 10  |-  ( x  =  E  ->  (
x  |`  ( { w }  X.  N ) )  =  ( E  |`  ( { w }  X.  N ) ) )
1110eqeq1d 2624 . . . . . . . . 9  |-  ( x  =  E  ->  (
( x  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) )  <-> 
( E  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) ) ) )
12 reseq1 5390 . . . . . . . . . 10  |-  ( x  =  E  ->  (
x  |`  ( ( N 
\  { w }
)  X.  N ) )  =  ( E  |`  ( ( N  \  { w } )  X.  N ) ) )
1312eqeq1d 2624 . . . . . . . . 9  |-  ( x  =  E  ->  (
( x  |`  (
( N  \  {
w } )  X.  N ) )  =  ( z  |`  (
( N  \  {
w } )  X.  N ) )  <->  ( E  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) ) )
1411, 13anbi12d 747 . . . . . . . 8  |-  ( x  =  E  ->  (
( ( x  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  <->  ( ( E  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) )  /\  ( E  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) ) ) )
15 fveq2 6191 . . . . . . . . 9  |-  ( x  =  E  ->  ( D `  x )  =  ( D `  E ) )
1615eqeq1d 2624 . . . . . . . 8  |-  ( x  =  E  ->  (
( D `  x
)  =  ( y 
.x.  ( D `  z ) )  <->  ( D `  E )  =  ( y  .x.  ( D `
 z ) ) ) )
1714, 16imbi12d 334 . . . . . . 7  |-  ( x  =  E  ->  (
( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( y  .x.  ( D `
 z ) ) )  <->  ( ( ( E  |`  ( {
w }  X.  N
) )  =  ( ( ( { w }  X.  N )  X. 
{ y } )  oF  .x.  (
z  |`  ( { w }  X.  N ) ) )  /\  ( E  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  E )  =  ( y  .x.  ( D `
 z ) ) ) ) )
18172ralbidv 2989 . . . . . 6  |-  ( x  =  E  ->  ( A. z  e.  B  A. w  e.  N  ( ( ( x  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( y  .x.  ( D `
 z ) ) )  <->  A. z  e.  B  A. w  e.  N  ( ( ( E  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) )  /\  ( E  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  E )  =  ( y  .x.  ( D `
 z ) ) ) ) )
19 sneq 4187 . . . . . . . . . . . 12  |-  ( y  =  F  ->  { y }  =  { F } )
2019xpeq2d 5139 . . . . . . . . . . 11  |-  ( y  =  F  ->  (
( { w }  X.  N )  X.  {
y } )  =  ( ( { w }  X.  N )  X. 
{ F } ) )
2120oveq1d 6665 . . . . . . . . . 10  |-  ( y  =  F  ->  (
( ( { w }  X.  N )  X. 
{ y } )  oF  .x.  (
z  |`  ( { w }  X.  N ) ) )  =  ( ( ( { w }  X.  N )  X.  { F } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) ) )
2221eqeq2d 2632 . . . . . . . . 9  |-  ( y  =  F  ->  (
( E  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) )  <-> 
( E  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { F } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) ) ) )
2322anbi1d 741 . . . . . . . 8  |-  ( y  =  F  ->  (
( ( E  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) )  /\  ( E  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  <->  ( ( E  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { F } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) )  /\  ( E  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) ) ) )
24 oveq1 6657 . . . . . . . . 9  |-  ( y  =  F  ->  (
y  .x.  ( D `  z ) )  =  ( F  .x.  ( D `  z )
) )
2524eqeq2d 2632 . . . . . . . 8  |-  ( y  =  F  ->  (
( D `  E
)  =  ( y 
.x.  ( D `  z ) )  <->  ( D `  E )  =  ( F  .x.  ( D `
 z ) ) ) )
2623, 25imbi12d 334 . . . . . . 7  |-  ( y  =  F  ->  (
( ( ( E  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) )  /\  ( E  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  E )  =  ( y  .x.  ( D `
 z ) ) )  <->  ( ( ( E  |`  ( {
w }  X.  N
) )  =  ( ( ( { w }  X.  N )  X. 
{ F } )  oF  .x.  (
z  |`  ( { w }  X.  N ) ) )  /\  ( E  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  E )  =  ( F  .x.  ( D `
 z ) ) ) ) )
27262ralbidv 2989 . . . . . 6  |-  ( y  =  F  ->  ( A. z  e.  B  A. w  e.  N  ( ( ( E  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) )  /\  ( E  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  E )  =  ( y  .x.  ( D `
 z ) ) )  <->  A. z  e.  B  A. w  e.  N  ( ( ( E  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { F } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) )  /\  ( E  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  E )  =  ( F  .x.  ( D `
 z ) ) ) ) )
2818, 27rspc2va 3323 . . . . 5  |-  ( ( ( E  e.  B  /\  F  e.  K
)  /\  A. x  e.  B  A. y  e.  K  A. z  e.  B  A. w  e.  N  ( (
( x  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { y } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) )  /\  ( x  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  x )  =  ( y  .x.  ( D `
 z ) ) ) )  ->  A. z  e.  B  A. w  e.  N  ( (
( E  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { F } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) )  /\  ( E  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  E )  =  ( F  .x.  ( D `
 z ) ) ) )
296, 7, 9, 28syl21anc 1325 . . . 4  |-  ( (
ph  /\  ( E  e.  B  /\  F  e.  K  /\  G  e.  B )  /\  H  e.  N )  ->  A. z  e.  B  A. w  e.  N  ( (
( E  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { F } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) )  /\  ( E  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  E )  =  ( F  .x.  ( D `
 z ) ) ) )
30 reseq1 5390 . . . . . . . . 9  |-  ( z  =  G  ->  (
z  |`  ( { w }  X.  N ) )  =  ( G  |`  ( { w }  X.  N ) ) )
3130oveq2d 6666 . . . . . . . 8  |-  ( z  =  G  ->  (
( ( { w }  X.  N )  X. 
{ F } )  oF  .x.  (
z  |`  ( { w }  X.  N ) ) )  =  ( ( ( { w }  X.  N )  X.  { F } )  oF  .x.  ( G  |`  ( { w }  X.  N ) ) ) )
3231eqeq2d 2632 . . . . . . 7  |-  ( z  =  G  ->  (
( E  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { F } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) )  <-> 
( E  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { F } )  oF  .x.  ( G  |`  ( { w }  X.  N ) ) ) ) )
33 reseq1 5390 . . . . . . . 8  |-  ( z  =  G  ->  (
z  |`  ( ( N 
\  { w }
)  X.  N ) )  =  ( G  |`  ( ( N  \  { w } )  X.  N ) ) )
3433eqeq2d 2632 . . . . . . 7  |-  ( z  =  G  ->  (
( E  |`  (
( N  \  {
w } )  X.  N ) )  =  ( z  |`  (
( N  \  {
w } )  X.  N ) )  <->  ( E  |`  ( ( N  \  { w } )  X.  N ) )  =  ( G  |`  ( ( N  \  { w } )  X.  N ) ) ) )
3532, 34anbi12d 747 . . . . . 6  |-  ( z  =  G  ->  (
( ( E  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { F } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) )  /\  ( E  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  <->  ( ( E  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { F } )  oF  .x.  ( G  |`  ( { w }  X.  N ) ) )  /\  ( E  |`  ( ( N  \  { w } )  X.  N ) )  =  ( G  |`  ( ( N  \  { w } )  X.  N ) ) ) ) )
36 fveq2 6191 . . . . . . . 8  |-  ( z  =  G  ->  ( D `  z )  =  ( D `  G ) )
3736oveq2d 6666 . . . . . . 7  |-  ( z  =  G  ->  ( F  .x.  ( D `  z ) )  =  ( F  .x.  ( D `  G )
) )
3837eqeq2d 2632 . . . . . 6  |-  ( z  =  G  ->  (
( D `  E
)  =  ( F 
.x.  ( D `  z ) )  <->  ( D `  E )  =  ( F  .x.  ( D `
 G ) ) ) )
3935, 38imbi12d 334 . . . . 5  |-  ( z  =  G  ->  (
( ( ( E  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { F } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) )  /\  ( E  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  E )  =  ( F  .x.  ( D `
 z ) ) )  <->  ( ( ( E  |`  ( {
w }  X.  N
) )  =  ( ( ( { w }  X.  N )  X. 
{ F } )  oF  .x.  ( G  |`  ( { w }  X.  N ) ) )  /\  ( E  |`  ( ( N  \  { w } )  X.  N ) )  =  ( G  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  E )  =  ( F  .x.  ( D `
 G ) ) ) ) )
40 sneq 4187 . . . . . . . . . 10  |-  ( w  =  H  ->  { w }  =  { H } )
4140xpeq1d 5138 . . . . . . . . 9  |-  ( w  =  H  ->  ( { w }  X.  N )  =  ( { H }  X.  N ) )
4241reseq2d 5396 . . . . . . . 8  |-  ( w  =  H  ->  ( E  |`  ( { w }  X.  N ) )  =  ( E  |`  ( { H }  X.  N ) ) )
4341xpeq1d 5138 . . . . . . . . 9  |-  ( w  =  H  ->  (
( { w }  X.  N )  X.  { F } )  =  ( ( { H }  X.  N )  X.  { F } ) )
4441reseq2d 5396 . . . . . . . . 9  |-  ( w  =  H  ->  ( G  |`  ( { w }  X.  N ) )  =  ( G  |`  ( { H }  X.  N ) ) )
4543, 44oveq12d 6668 . . . . . . . 8  |-  ( w  =  H  ->  (
( ( { w }  X.  N )  X. 
{ F } )  oF  .x.  ( G  |`  ( { w }  X.  N ) ) )  =  ( ( ( { H }  X.  N )  X.  { F } )  oF  .x.  ( G  |`  ( { H }  X.  N ) ) ) )
4642, 45eqeq12d 2637 . . . . . . 7  |-  ( w  =  H  ->  (
( E  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { F } )  oF  .x.  ( G  |`  ( { w }  X.  N ) ) )  <-> 
( E  |`  ( { H }  X.  N
) )  =  ( ( ( { H }  X.  N )  X. 
{ F } )  oF  .x.  ( G  |`  ( { H }  X.  N ) ) ) ) )
4740difeq2d 3728 . . . . . . . . . 10  |-  ( w  =  H  ->  ( N  \  { w }
)  =  ( N 
\  { H }
) )
4847xpeq1d 5138 . . . . . . . . 9  |-  ( w  =  H  ->  (
( N  \  {
w } )  X.  N )  =  ( ( N  \  { H } )  X.  N
) )
4948reseq2d 5396 . . . . . . . 8  |-  ( w  =  H  ->  ( E  |`  ( ( N 
\  { w }
)  X.  N ) )  =  ( E  |`  ( ( N  \  { H } )  X.  N ) ) )
5048reseq2d 5396 . . . . . . . 8  |-  ( w  =  H  ->  ( G  |`  ( ( N 
\  { w }
)  X.  N ) )  =  ( G  |`  ( ( N  \  { H } )  X.  N ) ) )
5149, 50eqeq12d 2637 . . . . . . 7  |-  ( w  =  H  ->  (
( E  |`  (
( N  \  {
w } )  X.  N ) )  =  ( G  |`  (
( N  \  {
w } )  X.  N ) )  <->  ( E  |`  ( ( N  \  { H } )  X.  N ) )  =  ( G  |`  (
( N  \  { H } )  X.  N
) ) ) )
5246, 51anbi12d 747 . . . . . 6  |-  ( w  =  H  ->  (
( ( E  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { F } )  oF  .x.  ( G  |`  ( { w }  X.  N ) ) )  /\  ( E  |`  ( ( N  \  { w } )  X.  N ) )  =  ( G  |`  ( ( N  \  { w } )  X.  N ) ) )  <->  ( ( E  |`  ( { H }  X.  N ) )  =  ( ( ( { H }  X.  N
)  X.  { F } )  oF  .x.  ( G  |`  ( { H }  X.  N ) ) )  /\  ( E  |`  ( ( N  \  { H } )  X.  N ) )  =  ( G  |`  (
( N  \  { H } )  X.  N
) ) ) ) )
5352imbi1d 331 . . . . 5  |-  ( w  =  H  ->  (
( ( ( E  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { F } )  oF  .x.  ( G  |`  ( { w }  X.  N ) ) )  /\  ( E  |`  ( ( N  \  { w } )  X.  N ) )  =  ( G  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  E )  =  ( F  .x.  ( D `
 G ) ) )  <->  ( ( ( E  |`  ( { H }  X.  N
) )  =  ( ( ( { H }  X.  N )  X. 
{ F } )  oF  .x.  ( G  |`  ( { H }  X.  N ) ) )  /\  ( E  |`  ( ( N  \  { H } )  X.  N ) )  =  ( G  |`  (
( N  \  { H } )  X.  N
) ) )  -> 
( D `  E
)  =  ( F 
.x.  ( D `  G ) ) ) ) )
5439, 53rspc2va 3323 . . . 4  |-  ( ( ( G  e.  B  /\  H  e.  N
)  /\  A. z  e.  B  A. w  e.  N  ( (
( E  |`  ( { w }  X.  N ) )  =  ( ( ( { w }  X.  N
)  X.  { F } )  oF  .x.  ( z  |`  ( { w }  X.  N ) ) )  /\  ( E  |`  ( ( N  \  { w } )  X.  N ) )  =  ( z  |`  ( ( N  \  { w } )  X.  N ) ) )  ->  ( D `  E )  =  ( F  .x.  ( D `
 z ) ) ) )  ->  (
( ( E  |`  ( { H }  X.  N ) )  =  ( ( ( { H }  X.  N
)  X.  { F } )  oF  .x.  ( G  |`  ( { H }  X.  N ) ) )  /\  ( E  |`  ( ( N  \  { H } )  X.  N ) )  =  ( G  |`  (
( N  \  { H } )  X.  N
) ) )  -> 
( D `  E
)  =  ( F 
.x.  ( D `  G ) ) ) )
554, 5, 29, 54syl21anc 1325 . . 3  |-  ( (
ph  /\  ( E  e.  B  /\  F  e.  K  /\  G  e.  B )  /\  H  e.  N )  ->  (
( ( E  |`  ( { H }  X.  N ) )  =  ( ( ( { H }  X.  N
)  X.  { F } )  oF  .x.  ( G  |`  ( { H }  X.  N ) ) )  /\  ( E  |`  ( ( N  \  { H } )  X.  N ) )  =  ( G  |`  (
( N  \  { H } )  X.  N
) ) )  -> 
( D `  E
)  =  ( F 
.x.  ( D `  G ) ) ) )
563, 55syl3an3 1361 . 2  |-  ( (
ph  /\  ( E  e.  B  /\  F  e.  K  /\  G  e.  B )  /\  ( H  e.  N  /\  ( E  |`  ( { H }  X.  N
) )  =  ( ( ( { H }  X.  N )  X. 
{ F } )  oF  .x.  ( G  |`  ( { H }  X.  N ) ) )  /\  ( E  |`  ( ( N  \  { H } )  X.  N ) )  =  ( G  |`  (
( N  \  { H } )  X.  N
) ) ) )  ->  ( ( ( E  |`  ( { H }  X.  N
) )  =  ( ( ( { H }  X.  N )  X. 
{ F } )  oF  .x.  ( G  |`  ( { H }  X.  N ) ) )  /\  ( E  |`  ( ( N  \  { H } )  X.  N ) )  =  ( G  |`  (
( N  \  { H } )  X.  N
) ) )  -> 
( D `  E
)  =  ( F 
.x.  ( D `  G ) ) ) )
571, 2, 56mp2and 715 1  |-  ( (
ph  /\  ( E  e.  B  /\  F  e.  K  /\  G  e.  B )  /\  ( H  e.  N  /\  ( E  |`  ( { H }  X.  N
) )  =  ( ( ( { H }  X.  N )  X. 
{ F } )  oF  .x.  ( G  |`  ( { H }  X.  N ) ) )  /\  ( E  |`  ( ( N  \  { H } )  X.  N ) )  =  ( G  |`  (
( N  \  { H } )  X.  N
) ) ) )  ->  ( D `  E )  =  ( F  .x.  ( D `
 G ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    \ cdif 3571   {csn 4177    X. cxp 5112    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   Fincfn 7955   Basecbs 15857   +g cplusg 15941   .rcmulr 15942   0gc0g 16100   1rcur 18501   Ringcrg 18547   Mat cmat 20213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-res 5126  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  mdetuni0  20427
  Copyright terms: Public domain W3C validator