| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mdetunilem5 | Structured version Visualization version Unicode version | ||
| Description: Lemma for mdetuni 20428. (Contributed by SO, 15-Jul-2018.) |
| Ref | Expression |
|---|---|
| mdetuni.a |
|
| mdetuni.b |
|
| mdetuni.k |
|
| mdetuni.0g |
|
| mdetuni.1r |
|
| mdetuni.pg |
|
| mdetuni.tg |
|
| mdetuni.n |
|
| mdetuni.r |
|
| mdetuni.ff |
|
| mdetuni.al |
|
| mdetuni.li |
|
| mdetuni.sc |
|
| mdetunilem5.ph |
|
| mdetunilem5.e |
|
| mdetunilem5.fgh |
|
| Ref | Expression |
|---|---|
| mdetunilem5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetunilem5.ph |
. 2
| |
| 2 | mdetuni.a |
. . 3
| |
| 3 | mdetuni.k |
. . 3
| |
| 4 | mdetuni.b |
. . 3
| |
| 5 | mdetuni.n |
. . . 4
| |
| 6 | 1, 5 | syl 17 |
. . 3
|
| 7 | mdetuni.r |
. . . 4
| |
| 8 | 1, 7 | syl 17 |
. . 3
|
| 9 | 8 | 3ad2ant1 1082 |
. . . . 5
|
| 10 | mdetunilem5.fgh |
. . . . . 6
| |
| 11 | 10 | simp1d 1073 |
. . . . 5
|
| 12 | 10 | simp2d 1074 |
. . . . 5
|
| 13 | mdetuni.pg |
. . . . . 6
| |
| 14 | 3, 13 | ringacl 18578 |
. . . . 5
|
| 15 | 9, 11, 12, 14 | syl3anc 1326 |
. . . 4
|
| 16 | 10 | simp3d 1075 |
. . . 4
|
| 17 | 15, 16 | ifcld 4131 |
. . 3
|
| 18 | 2, 3, 4, 6, 8, 17 | matbas2d 20229 |
. 2
|
| 19 | 11, 16 | ifcld 4131 |
. . 3
|
| 20 | 2, 3, 4, 6, 8, 19 | matbas2d 20229 |
. 2
|
| 21 | 12, 16 | ifcld 4131 |
. . 3
|
| 22 | 2, 3, 4, 6, 8, 21 | matbas2d 20229 |
. 2
|
| 23 | mdetunilem5.e |
. 2
| |
| 24 | snex 4908 |
. . . . . . 7
| |
| 25 | 24 | a1i 11 |
. . . . . 6
|
| 26 | 23 | snssd 4340 |
. . . . . . . . 9
|
| 27 | 26 | 3ad2ant1 1082 |
. . . . . . . 8
|
| 28 | simp2 1062 |
. . . . . . . 8
| |
| 29 | 27, 28 | sseldd 3604 |
. . . . . . 7
|
| 30 | 29, 11 | syld3an2 1373 |
. . . . . 6
|
| 31 | 29, 12 | syld3an2 1373 |
. . . . . 6
|
| 32 | eqidd 2623 |
. . . . . 6
| |
| 33 | eqidd 2623 |
. . . . . 6
| |
| 34 | 25, 6, 30, 31, 32, 33 | offval22 7253 |
. . . . 5
|
| 35 | 34 | eqcomd 2628 |
. . . 4
|
| 36 | mpt2snif 6754 |
. . . 4
| |
| 37 | mpt2snif 6754 |
. . . . 5
| |
| 38 | mpt2snif 6754 |
. . . . 5
| |
| 39 | 37, 38 | oveq12i 6662 |
. . . 4
|
| 40 | 35, 36, 39 | 3eqtr4g 2681 |
. . 3
|
| 41 | ssid 3624 |
. . . 4
| |
| 42 | resmpt2 6758 |
. . . 4
| |
| 43 | 26, 41, 42 | sylancl 694 |
. . 3
|
| 44 | resmpt2 6758 |
. . . . 5
| |
| 45 | 26, 41, 44 | sylancl 694 |
. . . 4
|
| 46 | resmpt2 6758 |
. . . . 5
| |
| 47 | 26, 41, 46 | sylancl 694 |
. . . 4
|
| 48 | 45, 47 | oveq12d 6668 |
. . 3
|
| 49 | 40, 43, 48 | 3eqtr4d 2666 |
. 2
|
| 50 | eldifsni 4320 |
. . . . . . 7
| |
| 51 | 50 | 3ad2ant2 1083 |
. . . . . 6
|
| 52 | 51 | neneqd 2799 |
. . . . 5
|
| 53 | iffalse 4095 |
. . . . . 6
| |
| 54 | iffalse 4095 |
. . . . . 6
| |
| 55 | 53, 54 | eqtr4d 2659 |
. . . . 5
|
| 56 | 52, 55 | syl 17 |
. . . 4
|
| 57 | 56 | mpt2eq3dva 6719 |
. . 3
|
| 58 | difss 3737 |
. . . 4
| |
| 59 | resmpt2 6758 |
. . . 4
| |
| 60 | 58, 41, 59 | mp2an 708 |
. . 3
|
| 61 | resmpt2 6758 |
. . . 4
| |
| 62 | 58, 41, 61 | mp2an 708 |
. . 3
|
| 63 | 57, 60, 62 | 3eqtr4g 2681 |
. 2
|
| 64 | iffalse 4095 |
. . . . . 6
| |
| 65 | 53, 64 | eqtr4d 2659 |
. . . . 5
|
| 66 | 52, 65 | syl 17 |
. . . 4
|
| 67 | 66 | mpt2eq3dva 6719 |
. . 3
|
| 68 | resmpt2 6758 |
. . . 4
| |
| 69 | 58, 41, 68 | mp2an 708 |
. . 3
|
| 70 | 67, 60, 69 | 3eqtr4g 2681 |
. 2
|
| 71 | mdetuni.0g |
. . 3
| |
| 72 | mdetuni.1r |
. . 3
| |
| 73 | mdetuni.tg |
. . 3
| |
| 74 | mdetuni.ff |
. . 3
| |
| 75 | mdetuni.al |
. . 3
| |
| 76 | mdetuni.li |
. . 3
| |
| 77 | mdetuni.sc |
. . 3
| |
| 78 | 2, 4, 3, 71, 72, 13, 73, 5, 7, 74, 75, 76, 77 | mdetunilem3 20420 |
. 2
|
| 79 | 1, 18, 20, 22, 23, 49, 63, 70, 78 | syl332anc 1357 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-ot 4186 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-hom 15966 df-cco 15967 df-0g 16102 df-prds 16108 df-pws 16110 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-ring 18549 df-sra 19172 df-rgmod 19173 df-dsmm 20076 df-frlm 20091 df-mat 20214 |
| This theorem is referenced by: mdetunilem6 20423 |
| Copyright terms: Public domain | W3C validator |