| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mdetunilem3 | Structured version Visualization version Unicode version | ||
| Description: Lemma for mdetuni 20428. (Contributed by SO, 15-Jul-2018.) |
| Ref | Expression |
|---|---|
| mdetuni.a |
|
| mdetuni.b |
|
| mdetuni.k |
|
| mdetuni.0g |
|
| mdetuni.1r |
|
| mdetuni.pg |
|
| mdetuni.tg |
|
| mdetuni.n |
|
| mdetuni.r |
|
| mdetuni.ff |
|
| mdetuni.al |
|
| mdetuni.li |
|
| mdetuni.sc |
|
| Ref | Expression |
|---|---|
| mdetunilem3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp23 1096 |
. 2
| |
| 2 | simp3l 1089 |
. 2
| |
| 3 | simp3r 1090 |
. 2
| |
| 4 | simprl 794 |
. . . . 5
| |
| 5 | simprr 796 |
. . . . 5
| |
| 6 | simpl2 1065 |
. . . . . 6
| |
| 7 | simpl3 1066 |
. . . . . 6
| |
| 8 | simpl1 1064 |
. . . . . . 7
| |
| 9 | mdetuni.li |
. . . . . . 7
| |
| 10 | 8, 9 | syl 17 |
. . . . . 6
|
| 11 | reseq1 5390 |
. . . . . . . . . . 11
| |
| 12 | 11 | eqeq1d 2624 |
. . . . . . . . . 10
|
| 13 | reseq1 5390 |
. . . . . . . . . . 11
| |
| 14 | 13 | eqeq1d 2624 |
. . . . . . . . . 10
|
| 15 | 13 | eqeq1d 2624 |
. . . . . . . . . 10
|
| 16 | 12, 14, 15 | 3anbi123d 1399 |
. . . . . . . . 9
|
| 17 | fveq2 6191 |
. . . . . . . . . 10
| |
| 18 | 17 | eqeq1d 2624 |
. . . . . . . . 9
|
| 19 | 16, 18 | imbi12d 334 |
. . . . . . . 8
|
| 20 | 19 | 2ralbidv 2989 |
. . . . . . 7
|
| 21 | reseq1 5390 |
. . . . . . . . . . . 12
| |
| 22 | 21 | oveq1d 6665 |
. . . . . . . . . . 11
|
| 23 | 22 | eqeq2d 2632 |
. . . . . . . . . 10
|
| 24 | reseq1 5390 |
. . . . . . . . . . 11
| |
| 25 | 24 | eqeq2d 2632 |
. . . . . . . . . 10
|
| 26 | 23, 25 | 3anbi12d 1400 |
. . . . . . . . 9
|
| 27 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 28 | 27 | oveq1d 6665 |
. . . . . . . . . 10
|
| 29 | 28 | eqeq2d 2632 |
. . . . . . . . 9
|
| 30 | 26, 29 | imbi12d 334 |
. . . . . . . 8
|
| 31 | 30 | 2ralbidv 2989 |
. . . . . . 7
|
| 32 | 20, 31 | rspc2va 3323 |
. . . . . 6
|
| 33 | 6, 7, 10, 32 | syl21anc 1325 |
. . . . 5
|
| 34 | reseq1 5390 |
. . . . . . . . . 10
| |
| 35 | 34 | oveq2d 6666 |
. . . . . . . . 9
|
| 36 | 35 | eqeq2d 2632 |
. . . . . . . 8
|
| 37 | reseq1 5390 |
. . . . . . . . 9
| |
| 38 | 37 | eqeq2d 2632 |
. . . . . . . 8
|
| 39 | 36, 38 | 3anbi13d 1401 |
. . . . . . 7
|
| 40 | fveq2 6191 |
. . . . . . . . 9
| |
| 41 | 40 | oveq2d 6666 |
. . . . . . . 8
|
| 42 | 41 | eqeq2d 2632 |
. . . . . . 7
|
| 43 | 39, 42 | imbi12d 334 |
. . . . . 6
|
| 44 | sneq 4187 |
. . . . . . . . . . 11
| |
| 45 | 44 | xpeq1d 5138 |
. . . . . . . . . 10
|
| 46 | 45 | reseq2d 5396 |
. . . . . . . . 9
|
| 47 | 45 | reseq2d 5396 |
. . . . . . . . . 10
|
| 48 | 45 | reseq2d 5396 |
. . . . . . . . . 10
|
| 49 | 47, 48 | oveq12d 6668 |
. . . . . . . . 9
|
| 50 | 46, 49 | eqeq12d 2637 |
. . . . . . . 8
|
| 51 | 44 | difeq2d 3728 |
. . . . . . . . . . 11
|
| 52 | 51 | xpeq1d 5138 |
. . . . . . . . . 10
|
| 53 | 52 | reseq2d 5396 |
. . . . . . . . 9
|
| 54 | 52 | reseq2d 5396 |
. . . . . . . . 9
|
| 55 | 53, 54 | eqeq12d 2637 |
. . . . . . . 8
|
| 56 | 52 | reseq2d 5396 |
. . . . . . . . 9
|
| 57 | 53, 56 | eqeq12d 2637 |
. . . . . . . 8
|
| 58 | 50, 55, 57 | 3anbi123d 1399 |
. . . . . . 7
|
| 59 | 58 | imbi1d 331 |
. . . . . 6
|
| 60 | 43, 59 | rspc2va 3323 |
. . . . 5
|
| 61 | 4, 5, 33, 60 | syl21anc 1325 |
. . . 4
|
| 62 | 61 | 3adantr3 1222 |
. . 3
|
| 63 | 62 | 3adant3 1081 |
. 2
|
| 64 | 1, 2, 3, 63 | mp3and 1427 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-res 5126 df-iota 5851 df-fv 5896 df-ov 6653 |
| This theorem is referenced by: mdetunilem5 20422 mdetuni0 20427 |
| Copyright terms: Public domain | W3C validator |