Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measres Structured version   Visualization version   Unicode version

Theorem measres 30285
Description: Building a measure restricted to a smaller sigma-algebra. (Contributed by Thierry Arnoux, 25-Dec-2016.)
Assertion
Ref Expression
measres  |-  ( ( M  e.  (measures `  S
)  /\  T  e.  U.
ran sigAlgebra  /\  T  C_  S
)  ->  ( M  |`  T )  e.  (measures `  T ) )

Proof of Theorem measres
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1062 . 2  |-  ( ( M  e.  (measures `  S
)  /\  T  e.  U.
ran sigAlgebra  /\  T  C_  S
)  ->  T  e.  U.
ran sigAlgebra )
2 measfrge0 30266 . . . . 5  |-  ( M  e.  (measures `  S
)  ->  M : S
--> ( 0 [,] +oo ) )
323ad2ant1 1082 . . . 4  |-  ( ( M  e.  (measures `  S
)  /\  T  e.  U.
ran sigAlgebra  /\  T  C_  S
)  ->  M : S
--> ( 0 [,] +oo ) )
4 simp3 1063 . . . 4  |-  ( ( M  e.  (measures `  S
)  /\  T  e.  U.
ran sigAlgebra  /\  T  C_  S
)  ->  T  C_  S
)
53, 4fssresd 6071 . . 3  |-  ( ( M  e.  (measures `  S
)  /\  T  e.  U.
ran sigAlgebra  /\  T  C_  S
)  ->  ( M  |`  T ) : T --> ( 0 [,] +oo ) )
6 0elsiga 30177 . . . . 5  |-  ( T  e.  U. ran sigAlgebra  ->  (/)  e.  T
)
7 fvres 6207 . . . . 5  |-  ( (/)  e.  T  ->  ( ( M  |`  T ) `  (/) )  =  ( M `  (/) ) )
81, 6, 73syl 18 . . . 4  |-  ( ( M  e.  (measures `  S
)  /\  T  e.  U.
ran sigAlgebra  /\  T  C_  S
)  ->  ( ( M  |`  T ) `  (/) )  =  ( M `
 (/) ) )
9 measvnul 30269 . . . . 5  |-  ( M  e.  (measures `  S
)  ->  ( M `  (/) )  =  0 )
1093ad2ant1 1082 . . . 4  |-  ( ( M  e.  (measures `  S
)  /\  T  e.  U.
ran sigAlgebra  /\  T  C_  S
)  ->  ( M `  (/) )  =  0 )
118, 10eqtrd 2656 . . 3  |-  ( ( M  e.  (measures `  S
)  /\  T  e.  U.
ran sigAlgebra  /\  T  C_  S
)  ->  ( ( M  |`  T ) `  (/) )  =  0 )
12 simp11 1091 . . . . . . 7  |-  ( ( ( M  e.  (measures `  S )  /\  T  e.  U. ran sigAlgebra  /\  T  C_  S )  /\  x  e.  ~P T  /\  (
x  ~<_  om  /\ Disj  y  e.  x  y ) )  ->  M  e.  (measures `  S ) )
13 simp13 1093 . . . . . . . 8  |-  ( ( ( M  e.  (measures `  S )  /\  T  e.  U. ran sigAlgebra  /\  T  C_  S )  /\  x  e.  ~P T  /\  (
x  ~<_  om  /\ Disj  y  e.  x  y ) )  ->  T  C_  S
)
14 simp2 1062 . . . . . . . 8  |-  ( ( ( M  e.  (measures `  S )  /\  T  e.  U. ran sigAlgebra  /\  T  C_  S )  /\  x  e.  ~P T  /\  (
x  ~<_  om  /\ Disj  y  e.  x  y ) )  ->  x  e.  ~P T )
15 sspwb 4917 . . . . . . . . 9  |-  ( T 
C_  S  <->  ~P T  C_ 
~P S )
16 ssel2 3598 . . . . . . . . 9  |-  ( ( ~P T  C_  ~P S  /\  x  e.  ~P T )  ->  x  e.  ~P S )
1715, 16sylanb 489 . . . . . . . 8  |-  ( ( T  C_  S  /\  x  e.  ~P T
)  ->  x  e.  ~P S )
1813, 14, 17syl2anc 693 . . . . . . 7  |-  ( ( ( M  e.  (measures `  S )  /\  T  e.  U. ran sigAlgebra  /\  T  C_  S )  /\  x  e.  ~P T  /\  (
x  ~<_  om  /\ Disj  y  e.  x  y ) )  ->  x  e.  ~P S )
19 simp3 1063 . . . . . . 7  |-  ( ( ( M  e.  (measures `  S )  /\  T  e.  U. ran sigAlgebra  /\  T  C_  S )  /\  x  e.  ~P T  /\  (
x  ~<_  om  /\ Disj  y  e.  x  y ) )  ->  ( x  ~<_  om 
/\ Disj  y  e.  x  y ) )
20 measvun 30272 . . . . . . 7  |-  ( ( M  e.  (measures `  S
)  /\  x  e.  ~P S  /\  (
x  ~<_  om  /\ Disj  y  e.  x  y ) )  ->  ( M `  U. x )  = Σ* y  e.  x ( M `  y ) )
2112, 18, 19, 20syl3anc 1326 . . . . . 6  |-  ( ( ( M  e.  (measures `  S )  /\  T  e.  U. ran sigAlgebra  /\  T  C_  S )  /\  x  e.  ~P T  /\  (
x  ~<_  om  /\ Disj  y  e.  x  y ) )  ->  ( M `  U. x )  = Σ* y  e.  x ( M `  y ) )
2213ad2ant1 1082 . . . . . . . 8  |-  ( ( ( M  e.  (measures `  S )  /\  T  e.  U. ran sigAlgebra  /\  T  C_  S )  /\  x  e.  ~P T  /\  (
x  ~<_  om  /\ Disj  y  e.  x  y ) )  ->  T  e.  U. ran sigAlgebra )
23 simp3l 1089 . . . . . . . 8  |-  ( ( ( M  e.  (measures `  S )  /\  T  e.  U. ran sigAlgebra  /\  T  C_  S )  /\  x  e.  ~P T  /\  (
x  ~<_  om  /\ Disj  y  e.  x  y ) )  ->  x  ~<_  om )
24 sigaclcu 30180 . . . . . . . 8  |-  ( ( T  e.  U. ran sigAlgebra  /\  x  e.  ~P T  /\  x  ~<_  om )  ->  U. x  e.  T
)
2522, 14, 23, 24syl3anc 1326 . . . . . . 7  |-  ( ( ( M  e.  (measures `  S )  /\  T  e.  U. ran sigAlgebra  /\  T  C_  S )  /\  x  e.  ~P T  /\  (
x  ~<_  om  /\ Disj  y  e.  x  y ) )  ->  U. x  e.  T
)
26 fvres 6207 . . . . . . 7  |-  ( U. x  e.  T  ->  ( ( M  |`  T ) `
 U. x )  =  ( M `  U. x ) )
2725, 26syl 17 . . . . . 6  |-  ( ( ( M  e.  (measures `  S )  /\  T  e.  U. ran sigAlgebra  /\  T  C_  S )  /\  x  e.  ~P T  /\  (
x  ~<_  om  /\ Disj  y  e.  x  y ) )  ->  ( ( M  |`  T ) `  U. x )  =  ( M `  U. x
) )
28 elpwi 4168 . . . . . . . . . . 11  |-  ( x  e.  ~P T  ->  x  C_  T )
2928sselda 3603 . . . . . . . . . 10  |-  ( ( x  e.  ~P T  /\  y  e.  x
)  ->  y  e.  T )
3029adantll 750 . . . . . . . . 9  |-  ( ( ( ( M  e.  (measures `  S )  /\  T  e.  U. ran sigAlgebra  /\  T  C_  S )  /\  x  e.  ~P T
)  /\  y  e.  x )  ->  y  e.  T )
31 fvres 6207 . . . . . . . . 9  |-  ( y  e.  T  ->  (
( M  |`  T ) `
 y )  =  ( M `  y
) )
3230, 31syl 17 . . . . . . . 8  |-  ( ( ( ( M  e.  (measures `  S )  /\  T  e.  U. ran sigAlgebra  /\  T  C_  S )  /\  x  e.  ~P T
)  /\  y  e.  x )  ->  (
( M  |`  T ) `
 y )  =  ( M `  y
) )
3332esumeq2dv 30100 . . . . . . 7  |-  ( ( ( M  e.  (measures `  S )  /\  T  e.  U. ran sigAlgebra  /\  T  C_  S )  /\  x  e.  ~P T )  -> Σ* y  e.  x ( ( M  |`  T ) `  y
)  = Σ* y  e.  x
( M `  y
) )
34333adant3 1081 . . . . . 6  |-  ( ( ( M  e.  (measures `  S )  /\  T  e.  U. ran sigAlgebra  /\  T  C_  S )  /\  x  e.  ~P T  /\  (
x  ~<_  om  /\ Disj  y  e.  x  y ) )  -> Σ* y  e.  x ( ( M  |`  T ) `
 y )  = Σ* y  e.  x ( M `
 y ) )
3521, 27, 343eqtr4d 2666 . . . . 5  |-  ( ( ( M  e.  (measures `  S )  /\  T  e.  U. ran sigAlgebra  /\  T  C_  S )  /\  x  e.  ~P T  /\  (
x  ~<_  om  /\ Disj  y  e.  x  y ) )  ->  ( ( M  |`  T ) `  U. x )  = Σ* y  e.  x ( ( M  |`  T ) `  y
) )
36353expia 1267 . . . 4  |-  ( ( ( M  e.  (measures `  S )  /\  T  e.  U. ran sigAlgebra  /\  T  C_  S )  /\  x  e.  ~P T )  -> 
( ( x  ~<_  om 
/\ Disj  y  e.  x  y )  ->  ( ( M  |`  T ) `  U. x )  = Σ* y  e.  x ( ( M  |`  T ) `  y
) ) )
3736ralrimiva 2966 . . 3  |-  ( ( M  e.  (measures `  S
)  /\  T  e.  U.
ran sigAlgebra  /\  T  C_  S
)  ->  A. x  e.  ~P  T ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  -> 
( ( M  |`  T ) `  U. x )  = Σ* y  e.  x ( ( M  |`  T ) `  y
) ) )
385, 11, 373jca 1242 . 2  |-  ( ( M  e.  (measures `  S
)  /\  T  e.  U.
ran sigAlgebra  /\  T  C_  S
)  ->  ( ( M  |`  T ) : T --> ( 0 [,] +oo )  /\  (
( M  |`  T ) `
 (/) )  =  0  /\  A. x  e. 
~P  T ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  -> 
( ( M  |`  T ) `  U. x )  = Σ* y  e.  x ( ( M  |`  T ) `  y
) ) ) )
39 ismeas 30262 . . 3  |-  ( T  e.  U. ran sigAlgebra  ->  (
( M  |`  T )  e.  (measures `  T
)  <->  ( ( M  |`  T ) : T --> ( 0 [,] +oo )  /\  ( ( M  |`  T ) `  (/) )  =  0  /\  A. x  e.  ~P  T ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  -> 
( ( M  |`  T ) `  U. x )  = Σ* y  e.  x ( ( M  |`  T ) `  y
) ) ) ) )
4039biimprd 238 . 2  |-  ( T  e.  U. ran sigAlgebra  ->  (
( ( M  |`  T ) : T --> ( 0 [,] +oo )  /\  ( ( M  |`  T ) `  (/) )  =  0  /\  A. x  e.  ~P  T ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  -> 
( ( M  |`  T ) `  U. x )  = Σ* y  e.  x ( ( M  |`  T ) `  y
) ) )  -> 
( M  |`  T )  e.  (measures `  T
) ) )
411, 38, 40sylc 65 1  |-  ( ( M  e.  (measures `  S
)  /\  T  e.  U.
ran sigAlgebra  /\  T  C_  S
)  ->  ( M  |`  T )  e.  (measures `  T ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U.cuni 4436  Disj wdisj 4620   class class class wbr 4653   ran crn 5115    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650   omcom 7065    ~<_ cdom 7953   0cc0 9936   +oocpnf 10071   [,]cicc 12178  Σ*cesum 30089  sigAlgebracsiga 30170  measurescmeas 30258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-esum 30090  df-siga 30171  df-meas 30259
This theorem is referenced by:  measinb2  30286
  Copyright terms: Public domain W3C validator