Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismeas Structured version   Visualization version   Unicode version

Theorem ismeas 30262
Description: The property of being a measure. (Contributed by Thierry Arnoux, 10-Sep-2016.) (Revised by Thierry Arnoux, 19-Oct-2016.)
Assertion
Ref Expression
ismeas  |-  ( S  e.  U. ran sigAlgebra  ->  ( M  e.  (measures `  S
)  <->  ( M : S
--> ( 0 [,] +oo )  /\  ( M `  (/) )  =  0  /\ 
A. x  e.  ~P  S ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  ->  ( M `  U. x )  = Σ* y  e.  x ( M `  y ) ) ) ) )
Distinct variable groups:    x, y, M    x, S
Allowed substitution hint:    S( y)

Proof of Theorem ismeas
Dummy variables  m  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3212 . . 3  |-  ( M  e.  (measures `  S
)  ->  M  e.  _V )
21a1i 11 . 2  |-  ( S  e.  U. ran sigAlgebra  ->  ( M  e.  (measures `  S
)  ->  M  e.  _V ) )
3 simp1 1061 . . 3  |-  ( ( M : S --> ( 0 [,] +oo )  /\  ( M `  (/) )  =  0  /\  A. x  e.  ~P  S ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  -> 
( M `  U. x )  = Σ* y  e.  x ( M `  y ) ) )  ->  M : S --> ( 0 [,] +oo ) )
4 ovex 6678 . . . 4  |-  ( 0 [,] +oo )  e. 
_V
5 fex2 7121 . . . . . 6  |-  ( ( M : S --> ( 0 [,] +oo )  /\  S  e.  U. ran sigAlgebra  /\  (
0 [,] +oo )  e.  _V )  ->  M  e.  _V )
653expb 1266 . . . . 5  |-  ( ( M : S --> ( 0 [,] +oo )  /\  ( S  e.  U. ran sigAlgebra  /\  ( 0 [,] +oo )  e.  _V )
)  ->  M  e.  _V )
76expcom 451 . . . 4  |-  ( ( S  e.  U. ran sigAlgebra  /\  ( 0 [,] +oo )  e.  _V )  ->  ( M : S --> ( 0 [,] +oo )  ->  M  e.  _V ) )
84, 7mpan2 707 . . 3  |-  ( S  e.  U. ran sigAlgebra  ->  ( M : S --> ( 0 [,] +oo )  ->  M  e.  _V )
)
93, 8syl5 34 . 2  |-  ( S  e.  U. ran sigAlgebra  ->  (
( M : S --> ( 0 [,] +oo )  /\  ( M `  (/) )  =  0  /\ 
A. x  e.  ~P  S ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  ->  ( M `  U. x )  = Σ* y  e.  x ( M `  y ) ) )  ->  M  e.  _V ) )
10 df-meas 30259 . . . 4  |- measures  =  ( s  e.  U. ran sigAlgebra  |->  { m  |  ( m : s --> ( 0 [,] +oo )  /\  ( m `  (/) )  =  0  /\  A. x  e.  ~P  s ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  -> 
( m `  U. x )  = Σ* y  e.  x ( m `  y ) ) ) } )
11 vex 3203 . . . . . 6  |-  s  e. 
_V
12 mapex 7863 . . . . . 6  |-  ( ( s  e.  _V  /\  ( 0 [,] +oo )  e.  _V )  ->  { m  |  m : s --> ( 0 [,] +oo ) }  e.  _V )
1311, 4, 12mp2an 708 . . . . 5  |-  { m  |  m : s --> ( 0 [,] +oo ) }  e.  _V
14 simp1 1061 . . . . . 6  |-  ( ( m : s --> ( 0 [,] +oo )  /\  ( m `  (/) )  =  0  /\  A. x  e.  ~P  s ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  -> 
( m `  U. x )  = Σ* y  e.  x ( m `  y ) ) )  ->  m : s --> ( 0 [,] +oo ) )
1514ss2abi 3674 . . . . 5  |-  { m  |  ( m : s --> ( 0 [,] +oo )  /\  (
m `  (/) )  =  0  /\  A. x  e.  ~P  s ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  -> 
( m `  U. x )  = Σ* y  e.  x ( m `  y ) ) ) }  C_  { m  |  m : s --> ( 0 [,] +oo ) }
1613, 15ssexi 4803 . . . 4  |-  { m  |  ( m : s --> ( 0 [,] +oo )  /\  (
m `  (/) )  =  0  /\  A. x  e.  ~P  s ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  -> 
( m `  U. x )  = Σ* y  e.  x ( m `  y ) ) ) }  e.  _V
17 simpr 477 . . . . . 6  |-  ( ( s  =  S  /\  m  =  M )  ->  m  =  M )
18 simpl 473 . . . . . 6  |-  ( ( s  =  S  /\  m  =  M )  ->  s  =  S )
1917, 18feq12d 6033 . . . . 5  |-  ( ( s  =  S  /\  m  =  M )  ->  ( m : s --> ( 0 [,] +oo ) 
<->  M : S --> ( 0 [,] +oo ) ) )
20 fveq1 6190 . . . . . . 7  |-  ( m  =  M  ->  (
m `  (/) )  =  ( M `  (/) ) )
2120eqeq1d 2624 . . . . . 6  |-  ( m  =  M  ->  (
( m `  (/) )  =  0  <->  ( M `  (/) )  =  0 ) )
2221adantl 482 . . . . 5  |-  ( ( s  =  S  /\  m  =  M )  ->  ( ( m `  (/) )  =  0  <->  ( M `  (/) )  =  0 ) )
2318pweqd 4163 . . . . . 6  |-  ( ( s  =  S  /\  m  =  M )  ->  ~P s  =  ~P S )
24 fveq1 6190 . . . . . . . . 9  |-  ( m  =  M  ->  (
m `  U. x )  =  ( M `  U. x ) )
25 fveq1 6190 . . . . . . . . . 10  |-  ( m  =  M  ->  (
m `  y )  =  ( M `  y ) )
2625esumeq2sdv 30101 . . . . . . . . 9  |-  ( m  =  M  -> Σ* y  e.  x
( m `  y
)  = Σ* y  e.  x
( M `  y
) )
2724, 26eqeq12d 2637 . . . . . . . 8  |-  ( m  =  M  ->  (
( m `  U. x )  = Σ* y  e.  x ( m `  y )  <->  ( M `  U. x )  = Σ* y  e.  x ( M `
 y ) ) )
2827imbi2d 330 . . . . . . 7  |-  ( m  =  M  ->  (
( ( x  ~<_  om 
/\ Disj  y  e.  x  y )  ->  ( m `  U. x )  = Σ* y  e.  x ( m `
 y ) )  <-> 
( ( x  ~<_  om 
/\ Disj  y  e.  x  y )  ->  ( M `  U. x )  = Σ* y  e.  x ( M `
 y ) ) ) )
2928adantl 482 . . . . . 6  |-  ( ( s  =  S  /\  m  =  M )  ->  ( ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  ->  (
m `  U. x )  = Σ* y  e.  x ( m `  y ) )  <->  ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  ->  ( M `  U. x )  = Σ* y  e.  x ( M `  y ) ) ) )
3023, 29raleqbidv 3152 . . . . 5  |-  ( ( s  =  S  /\  m  =  M )  ->  ( A. x  e. 
~P  s ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  -> 
( m `  U. x )  = Σ* y  e.  x ( m `  y ) )  <->  A. x  e.  ~P  S ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  -> 
( M `  U. x )  = Σ* y  e.  x ( M `  y ) ) ) )
3119, 22, 303anbi123d 1399 . . . 4  |-  ( ( s  =  S  /\  m  =  M )  ->  ( ( m : s --> ( 0 [,] +oo )  /\  (
m `  (/) )  =  0  /\  A. x  e.  ~P  s ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  -> 
( m `  U. x )  = Σ* y  e.  x ( m `  y ) ) )  <-> 
( M : S --> ( 0 [,] +oo )  /\  ( M `  (/) )  =  0  /\ 
A. x  e.  ~P  S ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  ->  ( M `  U. x )  = Σ* y  e.  x ( M `  y ) ) ) ) )
3210, 16, 31abfmpel 29455 . . 3  |-  ( ( S  e.  U. ran sigAlgebra  /\  M  e.  _V )  ->  ( M  e.  (measures `  S )  <->  ( M : S --> ( 0 [,] +oo )  /\  ( M `  (/) )  =  0  /\  A. x  e.  ~P  S ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  -> 
( M `  U. x )  = Σ* y  e.  x ( M `  y ) ) ) ) )
3332ex 450 . 2  |-  ( S  e.  U. ran sigAlgebra  ->  ( M  e.  _V  ->  ( M  e.  (measures `  S
)  <->  ( M : S
--> ( 0 [,] +oo )  /\  ( M `  (/) )  =  0  /\ 
A. x  e.  ~P  S ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  ->  ( M `  U. x )  = Σ* y  e.  x ( M `  y ) ) ) ) ) )
342, 9, 33pm5.21ndd 369 1  |-  ( S  e.  U. ran sigAlgebra  ->  ( M  e.  (measures `  S
)  <->  ( M : S
--> ( 0 [,] +oo )  /\  ( M `  (/) )  =  0  /\ 
A. x  e.  ~P  S ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  ->  ( M `  U. x )  = Σ* y  e.  x ( M `  y ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   _Vcvv 3200   (/)c0 3915   ~Pcpw 4158   U.cuni 4436  Disj wdisj 4620   class class class wbr 4653   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650   omcom 7065    ~<_ cdom 7953   0cc0 9936   +oocpnf 10071   [,]cicc 12178  Σ*cesum 30089  sigAlgebracsiga 30170  measurescmeas 30258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-esum 30090  df-meas 30259
This theorem is referenced by:  measbasedom  30265  measfrge0  30266  measvnul  30269  measvun  30272  measinb  30284  measres  30285  measdivcstOLD  30287  measdivcst  30288  cntmeas  30289  volmeas  30294  ddemeas  30299  omsmeas  30385  dstrvprob  30533
  Copyright terms: Public domain W3C validator