| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > meetfval | Structured version Visualization version Unicode version | ||
| Description: Value of meet function for a poset. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.) TODO: prove meetfval2 17016 first to reduce net proof size (existence part)? |
| Ref | Expression |
|---|---|
| meetfval.u |
|
| meetfval.m |
|
| Ref | Expression |
|---|---|
| meetfval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3212 |
. 2
| |
| 2 | meetfval.m |
. . 3
| |
| 3 | fvex 6201 |
. . . . . . 7
| |
| 4 | moeq 3382 |
. . . . . . . 8
| |
| 5 | 4 | a1i 11 |
. . . . . . 7
|
| 6 | eqid 2622 |
. . . . . . 7
| |
| 7 | 3, 3, 5, 6 | oprabex 7156 |
. . . . . 6
|
| 8 | 7 | a1i 11 |
. . . . 5
|
| 9 | meetfval.u |
. . . . . . . . . . . 12
| |
| 10 | 9 | glbfun 16993 |
. . . . . . . . . . 11
|
| 11 | funbrfv2b 6240 |
. . . . . . . . . . 11
| |
| 12 | 10, 11 | ax-mp 5 |
. . . . . . . . . 10
|
| 13 | eqid 2622 |
. . . . . . . . . . . . . 14
| |
| 14 | eqid 2622 |
. . . . . . . . . . . . . 14
| |
| 15 | simpl 473 |
. . . . . . . . . . . . . 14
| |
| 16 | simpr 477 |
. . . . . . . . . . . . . 14
| |
| 17 | 13, 14, 9, 15, 16 | glbelss 16995 |
. . . . . . . . . . . . 13
|
| 18 | 17 | ex 450 |
. . . . . . . . . . . 12
|
| 19 | vex 3203 |
. . . . . . . . . . . . 13
| |
| 20 | vex 3203 |
. . . . . . . . . . . . 13
| |
| 21 | 19, 20 | prss 4351 |
. . . . . . . . . . . 12
|
| 22 | 18, 21 | syl6ibr 242 |
. . . . . . . . . . 11
|
| 23 | eqcom 2629 |
. . . . . . . . . . . . 13
| |
| 24 | 23 | biimpi 206 |
. . . . . . . . . . . 12
|
| 25 | 24 | a1i 11 |
. . . . . . . . . . 11
|
| 26 | 22, 25 | anim12d 586 |
. . . . . . . . . 10
|
| 27 | 12, 26 | syl5bi 232 |
. . . . . . . . 9
|
| 28 | 27 | alrimiv 1855 |
. . . . . . . 8
|
| 29 | 28 | alrimiv 1855 |
. . . . . . 7
|
| 30 | 29 | alrimiv 1855 |
. . . . . 6
|
| 31 | ssoprab2 6711 |
. . . . . 6
| |
| 32 | 30, 31 | syl 17 |
. . . . 5
|
| 33 | 8, 32 | ssexd 4805 |
. . . 4
|
| 34 | fveq2 6191 |
. . . . . . . 8
| |
| 35 | 34, 9 | syl6eqr 2674 |
. . . . . . 7
|
| 36 | 35 | breqd 4664 |
. . . . . 6
|
| 37 | 36 | oprabbidv 6709 |
. . . . 5
|
| 38 | df-meet 16977 |
. . . . 5
| |
| 39 | 37, 38 | fvmptg 6280 |
. . . 4
|
| 40 | 33, 39 | mpdan 702 |
. . 3
|
| 41 | 2, 40 | syl5eq 2668 |
. 2
|
| 42 | 1, 41 | syl 17 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-oprab 6654 df-glb 16975 df-meet 16977 |
| This theorem is referenced by: meetfval2 17016 meet0 17137 odumeet 17140 odujoin 17142 |
| Copyright terms: Public domain | W3C validator |