MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetfval Structured version   Visualization version   Unicode version

Theorem meetfval 17015
Description: Value of meet function for a poset. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.) TODO: prove meetfval2 17016 first to reduce net proof size (existence part)?
Hypotheses
Ref Expression
meetfval.u  |-  G  =  ( glb `  K
)
meetfval.m  |-  ./\  =  ( meet `  K )
Assertion
Ref Expression
meetfval  |-  ( K  e.  V  ->  ./\  =  { <. <. x ,  y
>. ,  z >.  |  { x ,  y } G z } )
Distinct variable groups:    x, y,
z, K    z, G
Allowed substitution hints:    G( x, y)    ./\ (
x, y, z)    V( x, y, z)

Proof of Theorem meetfval
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( K  e.  V  ->  K  e.  _V )
2 meetfval.m . . 3  |-  ./\  =  ( meet `  K )
3 fvex 6201 . . . . . . 7  |-  ( Base `  K )  e.  _V
4 moeq 3382 . . . . . . . 8  |-  E* z 
z  =  ( G `
 { x ,  y } )
54a1i 11 . . . . . . 7  |-  ( ( x  e.  ( Base `  K )  /\  y  e.  ( Base `  K
) )  ->  E* z  z  =  ( G `  { x ,  y } ) )
6 eqid 2622 . . . . . . 7  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  =  ( G `  { x ,  y } ) ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
)  /\  z  =  ( G `  { x ,  y } ) ) }
73, 3, 5, 6oprabex 7156 . . . . . 6  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  =  ( G `  { x ,  y } ) ) }  e.  _V
87a1i 11 . . . . 5  |-  ( K  e.  _V  ->  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) )  /\  z  =  ( G `  { x ,  y } ) ) }  e.  _V )
9 meetfval.u . . . . . . . . . . . 12  |-  G  =  ( glb `  K
)
109glbfun 16993 . . . . . . . . . . 11  |-  Fun  G
11 funbrfv2b 6240 . . . . . . . . . . 11  |-  ( Fun 
G  ->  ( {
x ,  y } G z  <->  ( {
x ,  y }  e.  dom  G  /\  ( G `  { x ,  y } )  =  z ) ) )
1210, 11ax-mp 5 . . . . . . . . . 10  |-  ( { x ,  y } G z  <->  ( {
x ,  y }  e.  dom  G  /\  ( G `  { x ,  y } )  =  z ) )
13 eqid 2622 . . . . . . . . . . . . . 14  |-  ( Base `  K )  =  (
Base `  K )
14 eqid 2622 . . . . . . . . . . . . . 14  |-  ( le
`  K )  =  ( le `  K
)
15 simpl 473 . . . . . . . . . . . . . 14  |-  ( ( K  e.  _V  /\  { x ,  y }  e.  dom  G )  ->  K  e.  _V )
16 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( K  e.  _V  /\  { x ,  y }  e.  dom  G )  ->  { x ,  y }  e.  dom  G )
1713, 14, 9, 15, 16glbelss 16995 . . . . . . . . . . . . 13  |-  ( ( K  e.  _V  /\  { x ,  y }  e.  dom  G )  ->  { x ,  y }  C_  ( Base `  K ) )
1817ex 450 . . . . . . . . . . . 12  |-  ( K  e.  _V  ->  ( { x ,  y }  e.  dom  G  ->  { x ,  y }  C_  ( Base `  K ) ) )
19 vex 3203 . . . . . . . . . . . . 13  |-  x  e. 
_V
20 vex 3203 . . . . . . . . . . . . 13  |-  y  e. 
_V
2119, 20prss 4351 . . . . . . . . . . . 12  |-  ( ( x  e.  ( Base `  K )  /\  y  e.  ( Base `  K
) )  <->  { x ,  y }  C_  ( Base `  K )
)
2218, 21syl6ibr 242 . . . . . . . . . . 11  |-  ( K  e.  _V  ->  ( { x ,  y }  e.  dom  G  ->  ( x  e.  (
Base `  K )  /\  y  e.  ( Base `  K ) ) ) )
23 eqcom 2629 . . . . . . . . . . . . 13  |-  ( ( G `  { x ,  y } )  =  z  <->  z  =  ( G `  { x ,  y } ) )
2423biimpi 206 . . . . . . . . . . . 12  |-  ( ( G `  { x ,  y } )  =  z  ->  z  =  ( G `  { x ,  y } ) )
2524a1i 11 . . . . . . . . . . 11  |-  ( K  e.  _V  ->  (
( G `  {
x ,  y } )  =  z  -> 
z  =  ( G `
 { x ,  y } ) ) )
2622, 25anim12d 586 . . . . . . . . . 10  |-  ( K  e.  _V  ->  (
( { x ,  y }  e.  dom  G  /\  ( G `  { x ,  y } )  =  z )  ->  ( (
x  e.  ( Base `  K )  /\  y  e.  ( Base `  K
) )  /\  z  =  ( G `  { x ,  y } ) ) ) )
2712, 26syl5bi 232 . . . . . . . . 9  |-  ( K  e.  _V  ->  ( { x ,  y } G z  -> 
( ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
)  /\  z  =  ( G `  { x ,  y } ) ) ) )
2827alrimiv 1855 . . . . . . . 8  |-  ( K  e.  _V  ->  A. z
( { x ,  y } G z  ->  ( ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
)  /\  z  =  ( G `  { x ,  y } ) ) ) )
2928alrimiv 1855 . . . . . . 7  |-  ( K  e.  _V  ->  A. y A. z ( { x ,  y } G
z  ->  ( (
x  e.  ( Base `  K )  /\  y  e.  ( Base `  K
) )  /\  z  =  ( G `  { x ,  y } ) ) ) )
3029alrimiv 1855 . . . . . 6  |-  ( K  e.  _V  ->  A. x A. y A. z ( { x ,  y } G z  -> 
( ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
)  /\  z  =  ( G `  { x ,  y } ) ) ) )
31 ssoprab2 6711 . . . . . 6  |-  ( A. x A. y A. z
( { x ,  y } G z  ->  ( ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
)  /\  z  =  ( G `  { x ,  y } ) ) )  ->  { <. <.
x ,  y >. ,  z >.  |  {
x ,  y } G z }  C_  {
<. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
)  /\  z  =  ( G `  { x ,  y } ) ) } )
3230, 31syl 17 . . . . 5  |-  ( K  e.  _V  ->  { <. <.
x ,  y >. ,  z >.  |  {
x ,  y } G z }  C_  {
<. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
)  /\  z  =  ( G `  { x ,  y } ) ) } )
338, 32ssexd 4805 . . . 4  |-  ( K  e.  _V  ->  { <. <.
x ,  y >. ,  z >.  |  {
x ,  y } G z }  e.  _V )
34 fveq2 6191 . . . . . . . 8  |-  ( p  =  K  ->  ( glb `  p )  =  ( glb `  K
) )
3534, 9syl6eqr 2674 . . . . . . 7  |-  ( p  =  K  ->  ( glb `  p )  =  G )
3635breqd 4664 . . . . . 6  |-  ( p  =  K  ->  ( { x ,  y }  ( glb `  p
) z  <->  { x ,  y } G
z ) )
3736oprabbidv 6709 . . . . 5  |-  ( p  =  K  ->  { <. <.
x ,  y >. ,  z >.  |  {
x ,  y }  ( glb `  p
) z }  =  { <. <. x ,  y
>. ,  z >.  |  { x ,  y } G z } )
38 df-meet 16977 . . . . 5  |-  meet  =  ( p  e.  _V  |->  { <. <. x ,  y
>. ,  z >.  |  { x ,  y }  ( glb `  p
) z } )
3937, 38fvmptg 6280 . . . 4  |-  ( ( K  e.  _V  /\  {
<. <. x ,  y
>. ,  z >.  |  { x ,  y } G z }  e.  _V )  -> 
( meet `  K )  =  { <. <. x ,  y
>. ,  z >.  |  { x ,  y } G z } )
4033, 39mpdan 702 . . 3  |-  ( K  e.  _V  ->  ( meet `  K )  =  { <. <. x ,  y
>. ,  z >.  |  { x ,  y } G z } )
412, 40syl5eq 2668 . 2  |-  ( K  e.  _V  ->  ./\  =  { <. <. x ,  y
>. ,  z >.  |  { x ,  y } G z } )
421, 41syl 17 1  |-  ( K  e.  V  ->  ./\  =  { <. <. x ,  y
>. ,  z >.  |  { x ,  y } G z } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   E*wmo 2471   _Vcvv 3200    C_ wss 3574   {cpr 4179   class class class wbr 4653   dom cdm 5114   Fun wfun 5882   ` cfv 5888   {coprab 6651   Basecbs 15857   lecple 15948   glbcglb 16943   meetcmee 16945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-oprab 6654  df-glb 16975  df-meet 16977
This theorem is referenced by:  meetfval2  17016  meet0  17137  odumeet  17140  odujoin  17142
  Copyright terms: Public domain W3C validator