MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joinle Structured version   Visualization version   Unicode version

Theorem joinle 17014
Description: A join is less than or equal to a third value iff each argument is less than or equal to the third value. (Contributed by NM, 16-Sep-2011.)
Hypotheses
Ref Expression
joinle.b  |-  B  =  ( Base `  K
)
joinle.l  |-  .<_  =  ( le `  K )
joinle.j  |-  .\/  =  ( join `  K )
joinle.k  |-  ( ph  ->  K  e.  Poset )
joinle.x  |-  ( ph  ->  X  e.  B )
joinle.y  |-  ( ph  ->  Y  e.  B )
joinle.z  |-  ( ph  ->  Z  e.  B )
joinle.e  |-  ( ph  -> 
<. X ,  Y >.  e. 
dom  .\/  )
Assertion
Ref Expression
joinle  |-  ( ph  ->  ( ( X  .<_  Z  /\  Y  .<_  Z )  <-> 
( X  .\/  Y
)  .<_  Z ) )

Proof of Theorem joinle
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 joinle.z . . 3  |-  ( ph  ->  Z  e.  B )
2 joinle.b . . . . 5  |-  B  =  ( Base `  K
)
3 joinle.l . . . . 5  |-  .<_  =  ( le `  K )
4 joinle.j . . . . 5  |-  .\/  =  ( join `  K )
5 joinle.k . . . . 5  |-  ( ph  ->  K  e.  Poset )
6 joinle.x . . . . 5  |-  ( ph  ->  X  e.  B )
7 joinle.y . . . . 5  |-  ( ph  ->  Y  e.  B )
8 joinle.e . . . . 5  |-  ( ph  -> 
<. X ,  Y >.  e. 
dom  .\/  )
92, 3, 4, 5, 6, 7, 8joinlem 17011 . . . 4  |-  ( ph  ->  ( ( X  .<_  ( X  .\/  Y )  /\  Y  .<_  ( X 
.\/  Y ) )  /\  A. z  e.  B  ( ( X 
.<_  z  /\  Y  .<_  z )  ->  ( X  .\/  Y )  .<_  z ) ) )
109simprd 479 . . 3  |-  ( ph  ->  A. z  e.  B  ( ( X  .<_  z  /\  Y  .<_  z )  ->  ( X  .\/  Y )  .<_  z )
)
11 breq2 4657 . . . . . 6  |-  ( z  =  Z  ->  ( X  .<_  z  <->  X  .<_  Z ) )
12 breq2 4657 . . . . . 6  |-  ( z  =  Z  ->  ( Y  .<_  z  <->  Y  .<_  Z ) )
1311, 12anbi12d 747 . . . . 5  |-  ( z  =  Z  ->  (
( X  .<_  z  /\  Y  .<_  z )  <->  ( X  .<_  Z  /\  Y  .<_  Z ) ) )
14 breq2 4657 . . . . 5  |-  ( z  =  Z  ->  (
( X  .\/  Y
)  .<_  z  <->  ( X  .\/  Y )  .<_  Z ) )
1513, 14imbi12d 334 . . . 4  |-  ( z  =  Z  ->  (
( ( X  .<_  z  /\  Y  .<_  z )  ->  ( X  .\/  Y )  .<_  z )  <->  ( ( X  .<_  Z  /\  Y  .<_  Z )  -> 
( X  .\/  Y
)  .<_  Z ) ) )
1615rspcva 3307 . . 3  |-  ( ( Z  e.  B  /\  A. z  e.  B  ( ( X  .<_  z  /\  Y  .<_  z )  -> 
( X  .\/  Y
)  .<_  z ) )  ->  ( ( X 
.<_  Z  /\  Y  .<_  Z )  ->  ( X  .\/  Y )  .<_  Z ) )
171, 10, 16syl2anc 693 . 2  |-  ( ph  ->  ( ( X  .<_  Z  /\  Y  .<_  Z )  ->  ( X  .\/  Y )  .<_  Z )
)
182, 3, 4, 5, 6, 7, 8lejoin1 17012 . . . 4  |-  ( ph  ->  X  .<_  ( X  .\/  Y ) )
192, 4, 5, 6, 7, 8joincl 17006 . . . . 5  |-  ( ph  ->  ( X  .\/  Y
)  e.  B )
202, 3postr 16953 . . . . 5  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  ( X  .\/  Y )  e.  B  /\  Z  e.  B ) )  -> 
( ( X  .<_  ( X  .\/  Y )  /\  ( X  .\/  Y )  .<_  Z )  ->  X  .<_  Z )
)
215, 6, 19, 1, 20syl13anc 1328 . . . 4  |-  ( ph  ->  ( ( X  .<_  ( X  .\/  Y )  /\  ( X  .\/  Y )  .<_  Z )  ->  X  .<_  Z )
)
2218, 21mpand 711 . . 3  |-  ( ph  ->  ( ( X  .\/  Y )  .<_  Z  ->  X 
.<_  Z ) )
232, 3, 4, 5, 6, 7, 8lejoin2 17013 . . . 4  |-  ( ph  ->  Y  .<_  ( X  .\/  Y ) )
242, 3postr 16953 . . . . 5  |-  ( ( K  e.  Poset  /\  ( Y  e.  B  /\  ( X  .\/  Y )  e.  B  /\  Z  e.  B ) )  -> 
( ( Y  .<_  ( X  .\/  Y )  /\  ( X  .\/  Y )  .<_  Z )  ->  Y  .<_  Z )
)
255, 7, 19, 1, 24syl13anc 1328 . . . 4  |-  ( ph  ->  ( ( Y  .<_  ( X  .\/  Y )  /\  ( X  .\/  Y )  .<_  Z )  ->  Y  .<_  Z )
)
2623, 25mpand 711 . . 3  |-  ( ph  ->  ( ( X  .\/  Y )  .<_  Z  ->  Y 
.<_  Z ) )
2722, 26jcad 555 . 2  |-  ( ph  ->  ( ( X  .\/  Y )  .<_  Z  ->  ( X  .<_  Z  /\  Y  .<_  Z ) ) )
2817, 27impbid 202 1  |-  ( ph  ->  ( ( X  .<_  Z  /\  Y  .<_  Z )  <-> 
( X  .\/  Y
)  .<_  Z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   <.cop 4183   class class class wbr 4653   dom cdm 5114   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   Posetcpo 16940   joincjn 16944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-poset 16946  df-lub 16974  df-join 16976
This theorem is referenced by:  latjle12  17062
  Copyright terms: Public domain W3C validator