MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirbtwnhl Structured version   Visualization version   Unicode version

Theorem mirbtwnhl 25575
Description: If the center of the point inversion  A is between two points  X and  Y, then the half lines are mirrored. (Contributed by Thierry Arnoux, 3-Mar-2020.)
Hypotheses
Ref Expression
mirval.p  |-  P  =  ( Base `  G
)
mirval.d  |-  .-  =  ( dist `  G )
mirval.i  |-  I  =  (Itv `  G )
mirval.l  |-  L  =  (LineG `  G )
mirval.s  |-  S  =  (pInvG `  G )
mirval.g  |-  ( ph  ->  G  e. TarskiG )
mirhl.m  |-  M  =  ( S `  A
)
mirhl.k  |-  K  =  (hlG `  G )
mirhl.a  |-  ( ph  ->  A  e.  P )
mirhl.x  |-  ( ph  ->  X  e.  P )
mirhl.y  |-  ( ph  ->  Y  e.  P )
mirhl.z  |-  ( ph  ->  Z  e.  P )
mirbtwnhl.1  |-  ( ph  ->  X  =/=  A )
mirbtwnhl.2  |-  ( ph  ->  Y  =/=  A )
mirbtwnhl.3  |-  ( ph  ->  A  e.  ( X I Y ) )
Assertion
Ref Expression
mirbtwnhl  |-  ( ph  ->  ( Z ( K `
 A ) X  <-> 
( M `  Z
) ( K `  A ) Y ) )

Proof of Theorem mirbtwnhl
StepHypRef Expression
1 mirval.p . . . . . 6  |-  P  =  ( Base `  G
)
2 mirval.i . . . . . 6  |-  I  =  (Itv `  G )
3 mirhl.k . . . . . 6  |-  K  =  (hlG `  G )
4 mirhl.a . . . . . 6  |-  ( ph  ->  A  e.  P )
5 mirhl.x . . . . . 6  |-  ( ph  ->  X  e.  P )
6 mirval.g . . . . . 6  |-  ( ph  ->  G  e. TarskiG )
71, 2, 3, 4, 5, 4, 6hleqnid 25503 . . . . 5  |-  ( ph  ->  -.  A ( K `
 A ) X )
87adantr 481 . . . 4  |-  ( (
ph  /\  Z  =  A )  ->  -.  A ( K `  A ) X )
9 simpr 477 . . . . 5  |-  ( (
ph  /\  Z  =  A )  ->  Z  =  A )
109breq1d 4663 . . . 4  |-  ( (
ph  /\  Z  =  A )  ->  ( Z ( K `  A ) X  <->  A ( K `  A ) X ) )
118, 10mtbird 315 . . 3  |-  ( (
ph  /\  Z  =  A )  ->  -.  Z ( K `  A ) X )
12 mirhl.y . . . . . 6  |-  ( ph  ->  Y  e.  P )
131, 2, 3, 4, 12, 4, 6hleqnid 25503 . . . . 5  |-  ( ph  ->  -.  A ( K `
 A ) Y )
1413adantr 481 . . . 4  |-  ( (
ph  /\  Z  =  A )  ->  -.  A ( K `  A ) Y )
159fveq2d 6195 . . . . . 6  |-  ( (
ph  /\  Z  =  A )  ->  ( M `  Z )  =  ( M `  A ) )
16 mirval.d . . . . . . . 8  |-  .-  =  ( dist `  G )
17 mirval.l . . . . . . . 8  |-  L  =  (LineG `  G )
18 mirval.s . . . . . . . 8  |-  S  =  (pInvG `  G )
19 mirhl.m . . . . . . . 8  |-  M  =  ( S `  A
)
201, 16, 2, 17, 18, 6, 4, 19mircinv 25563 . . . . . . 7  |-  ( ph  ->  ( M `  A
)  =  A )
2120adantr 481 . . . . . 6  |-  ( (
ph  /\  Z  =  A )  ->  ( M `  A )  =  A )
2215, 21eqtrd 2656 . . . . 5  |-  ( (
ph  /\  Z  =  A )  ->  ( M `  Z )  =  A )
2322breq1d 4663 . . . 4  |-  ( (
ph  /\  Z  =  A )  ->  (
( M `  Z
) ( K `  A ) Y  <->  A ( K `  A ) Y ) )
2414, 23mtbird 315 . . 3  |-  ( (
ph  /\  Z  =  A )  ->  -.  ( M `  Z ) ( K `  A
) Y )
2511, 242falsed 366 . 2  |-  ( (
ph  /\  Z  =  A )  ->  ( Z ( K `  A ) X  <->  ( M `  Z ) ( K `
 A ) Y ) )
26 simplr 792 . . . . . . . 8  |-  ( ( ( ph  /\  Z  =/=  A )  /\  Z
( K `  A
) X )  ->  Z  =/=  A )
2726neneqd 2799 . . . . . . 7  |-  ( ( ( ph  /\  Z  =/=  A )  /\  Z
( K `  A
) X )  ->  -.  Z  =  A
)
286ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ph  /\  Z  =/=  A )  /\  Z ( K `  A ) X )  /\  ( M `  Z )  =  A )  ->  G  e. TarskiG )
294ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ph  /\  Z  =/=  A )  /\  Z ( K `  A ) X )  /\  ( M `  Z )  =  A )  ->  A  e.  P )
30 mirhl.z . . . . . . . . 9  |-  ( ph  ->  Z  e.  P )
3130ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( ph  /\  Z  =/=  A )  /\  Z ( K `  A ) X )  /\  ( M `  Z )  =  A )  ->  Z  e.  P )
32 simpr 477 . . . . . . . . 9  |-  ( ( ( ( ph  /\  Z  =/=  A )  /\  Z ( K `  A ) X )  /\  ( M `  Z )  =  A )  ->  ( M `  Z )  =  A )
3320ad3antrrr 766 . . . . . . . . 9  |-  ( ( ( ( ph  /\  Z  =/=  A )  /\  Z ( K `  A ) X )  /\  ( M `  Z )  =  A )  ->  ( M `  A )  =  A )
3432, 33eqtr4d 2659 . . . . . . . 8  |-  ( ( ( ( ph  /\  Z  =/=  A )  /\  Z ( K `  A ) X )  /\  ( M `  Z )  =  A )  ->  ( M `  Z )  =  ( M `  A ) )
351, 16, 2, 17, 18, 28, 29, 19, 31, 29, 34mireq 25560 . . . . . . 7  |-  ( ( ( ( ph  /\  Z  =/=  A )  /\  Z ( K `  A ) X )  /\  ( M `  Z )  =  A )  ->  Z  =  A )
3627, 35mtand 691 . . . . . 6  |-  ( ( ( ph  /\  Z  =/=  A )  /\  Z
( K `  A
) X )  ->  -.  ( M `  Z
)  =  A )
3736neqned 2801 . . . . 5  |-  ( ( ( ph  /\  Z  =/=  A )  /\  Z
( K `  A
) X )  -> 
( M `  Z
)  =/=  A )
38 mirbtwnhl.2 . . . . . 6  |-  ( ph  ->  Y  =/=  A )
3938ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  Z  =/=  A )  /\  Z
( K `  A
) X )  ->  Y  =/=  A )
406ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  Z  =/=  A )  /\  Z
( K `  A
) X )  ->  G  e. TarskiG )
415ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  Z  =/=  A )  /\  Z
( K `  A
) X )  ->  X  e.  P )
424ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  Z  =/=  A )  /\  Z
( K `  A
) X )  ->  A  e.  P )
431, 16, 2, 17, 18, 6, 4, 19, 30mircl 25556 . . . . . . 7  |-  ( ph  ->  ( M `  Z
)  e.  P )
4443ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  Z  =/=  A )  /\  Z
( K `  A
) X )  -> 
( M `  Z
)  e.  P )
4512ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  Z  =/=  A )  /\  Z
( K `  A
) X )  ->  Y  e.  P )
46 mirbtwnhl.1 . . . . . . 7  |-  ( ph  ->  X  =/=  A )
4746ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  Z  =/=  A )  /\  Z
( K `  A
) X )  ->  X  =/=  A )
4830ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  Z  =/=  A )  /\  Z
( K `  A
) X )  ->  Z  e.  P )
491, 2, 3, 30, 5, 4, 6ishlg 25497 . . . . . . . . . . 11  |-  ( ph  ->  ( Z ( K `
 A ) X  <-> 
( Z  =/=  A  /\  X  =/=  A  /\  ( Z  e.  ( A I X )  \/  X  e.  ( A I Z ) ) ) ) )
5049adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  Z  =/=  A )  ->  ( Z
( K `  A
) X  <->  ( Z  =/=  A  /\  X  =/= 
A  /\  ( Z  e.  ( A I X )  \/  X  e.  ( A I Z ) ) ) ) )
5150biimpa 501 . . . . . . . . 9  |-  ( ( ( ph  /\  Z  =/=  A )  /\  Z
( K `  A
) X )  -> 
( Z  =/=  A  /\  X  =/=  A  /\  ( Z  e.  ( A I X )  \/  X  e.  ( A I Z ) ) ) )
5251simp3d 1075 . . . . . . . 8  |-  ( ( ( ph  /\  Z  =/=  A )  /\  Z
( K `  A
) X )  -> 
( Z  e.  ( A I X )  \/  X  e.  ( A I Z ) ) )
5352orcomd 403 . . . . . . 7  |-  ( ( ( ph  /\  Z  =/=  A )  /\  Z
( K `  A
) X )  -> 
( X  e.  ( A I Z )  \/  Z  e.  ( A I X ) ) )
541, 16, 2, 17, 18, 40, 19, 42, 41, 48, 53mirconn 25573 . . . . . 6  |-  ( ( ( ph  /\  Z  =/=  A )  /\  Z
( K `  A
) X )  ->  A  e.  ( X I ( M `  Z ) ) )
55 mirbtwnhl.3 . . . . . . 7  |-  ( ph  ->  A  e.  ( X I Y ) )
5655ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  Z  =/=  A )  /\  Z
( K `  A
) X )  ->  A  e.  ( X I Y ) )
571, 2, 40, 41, 42, 44, 45, 47, 54, 56tgbtwnconn2 25471 . . . . 5  |-  ( ( ( ph  /\  Z  =/=  A )  /\  Z
( K `  A
) X )  -> 
( ( M `  Z )  e.  ( A I Y )  \/  Y  e.  ( A I ( M `
 Z ) ) ) )
5837, 39, 573jca 1242 . . . 4  |-  ( ( ( ph  /\  Z  =/=  A )  /\  Z
( K `  A
) X )  -> 
( ( M `  Z )  =/=  A  /\  Y  =/=  A  /\  ( ( M `  Z )  e.  ( A I Y )  \/  Y  e.  ( A I ( M `
 Z ) ) ) ) )
591, 2, 3, 43, 12, 4, 6ishlg 25497 . . . . . 6  |-  ( ph  ->  ( ( M `  Z ) ( K `
 A ) Y  <-> 
( ( M `  Z )  =/=  A  /\  Y  =/=  A  /\  ( ( M `  Z )  e.  ( A I Y )  \/  Y  e.  ( A I ( M `
 Z ) ) ) ) ) )
6059adantr 481 . . . . 5  |-  ( (
ph  /\  Z  =/=  A )  ->  ( ( M `  Z )
( K `  A
) Y  <->  ( ( M `  Z )  =/=  A  /\  Y  =/= 
A  /\  ( ( M `  Z )  e.  ( A I Y )  \/  Y  e.  ( A I ( M `  Z ) ) ) ) ) )
6160adantr 481 . . . 4  |-  ( ( ( ph  /\  Z  =/=  A )  /\  Z
( K `  A
) X )  -> 
( ( M `  Z ) ( K `
 A ) Y  <-> 
( ( M `  Z )  =/=  A  /\  Y  =/=  A  /\  ( ( M `  Z )  e.  ( A I Y )  \/  Y  e.  ( A I ( M `
 Z ) ) ) ) ) )
6258, 61mpbird 247 . . 3  |-  ( ( ( ph  /\  Z  =/=  A )  /\  Z
( K `  A
) X )  -> 
( M `  Z
) ( K `  A ) Y )
63 simplr 792 . . . . 5  |-  ( ( ( ph  /\  Z  =/=  A )  /\  ( M `  Z )
( K `  A
) Y )  ->  Z  =/=  A )
6446ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  Z  =/=  A )  /\  ( M `  Z )
( K `  A
) Y )  ->  X  =/=  A )
656ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  Z  =/=  A )  /\  ( M `  Z )
( K `  A
) Y )  ->  G  e. TarskiG )
6612ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  Z  =/=  A )  /\  ( M `  Z )
( K `  A
) Y )  ->  Y  e.  P )
674ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  Z  =/=  A )  /\  ( M `  Z )
( K `  A
) Y )  ->  A  e.  P )
6830ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  Z  =/=  A )  /\  ( M `  Z )
( K `  A
) Y )  ->  Z  e.  P )
695ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  Z  =/=  A )  /\  ( M `  Z )
( K `  A
) Y )  ->  X  e.  P )
7038ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  Z  =/=  A )  /\  ( M `  Z )
( K `  A
) Y )  ->  Y  =/=  A )
7120ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  Z  =/=  A )  /\  ( M `  Z )
( K `  A
) Y )  -> 
( M `  A
)  =  A )
7243ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  Z  =/=  A )  /\  ( M `  Z )
( K `  A
) Y )  -> 
( M `  Z
)  e.  P )
731, 16, 2, 17, 18, 65, 67, 19, 66mircl 25556 . . . . . . . . 9  |-  ( ( ( ph  /\  Z  =/=  A )  /\  ( M `  Z )
( K `  A
) Y )  -> 
( M `  Y
)  e.  P )
7460biimpa 501 . . . . . . . . . . 11  |-  ( ( ( ph  /\  Z  =/=  A )  /\  ( M `  Z )
( K `  A
) Y )  -> 
( ( M `  Z )  =/=  A  /\  Y  =/=  A  /\  ( ( M `  Z )  e.  ( A I Y )  \/  Y  e.  ( A I ( M `
 Z ) ) ) ) )
7574simp3d 1075 . . . . . . . . . 10  |-  ( ( ( ph  /\  Z  =/=  A )  /\  ( M `  Z )
( K `  A
) Y )  -> 
( ( M `  Z )  e.  ( A I Y )  \/  Y  e.  ( A I ( M `
 Z ) ) ) )
761, 16, 2, 17, 18, 65, 19, 67, 72, 66, 75mirconn 25573 . . . . . . . . 9  |-  ( ( ( ph  /\  Z  =/=  A )  /\  ( M `  Z )
( K `  A
) Y )  ->  A  e.  ( ( M `  Z )
I ( M `  Y ) ) )
771, 16, 2, 65, 72, 67, 73, 76tgbtwncom 25383 . . . . . . . 8  |-  ( ( ( ph  /\  Z  =/=  A )  /\  ( M `  Z )
( K `  A
) Y )  ->  A  e.  ( ( M `  Y )
I ( M `  Z ) ) )
7871, 77eqeltrd 2701 . . . . . . 7  |-  ( ( ( ph  /\  Z  =/=  A )  /\  ( M `  Z )
( K `  A
) Y )  -> 
( M `  A
)  e.  ( ( M `  Y ) I ( M `  Z ) ) )
791, 16, 2, 17, 18, 65, 67, 19, 66, 67, 68mirbtwnb 25567 . . . . . . 7  |-  ( ( ( ph  /\  Z  =/=  A )  /\  ( M `  Z )
( K `  A
) Y )  -> 
( A  e.  ( Y I Z )  <-> 
( M `  A
)  e.  ( ( M `  Y ) I ( M `  Z ) ) ) )
8078, 79mpbird 247 . . . . . 6  |-  ( ( ( ph  /\  Z  =/=  A )  /\  ( M `  Z )
( K `  A
) Y )  ->  A  e.  ( Y I Z ) )
811, 16, 2, 6, 5, 4, 12, 55tgbtwncom 25383 . . . . . . 7  |-  ( ph  ->  A  e.  ( Y I X ) )
8281ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  Z  =/=  A )  /\  ( M `  Z )
( K `  A
) Y )  ->  A  e.  ( Y I X ) )
831, 2, 65, 66, 67, 68, 69, 70, 80, 82tgbtwnconn2 25471 . . . . 5  |-  ( ( ( ph  /\  Z  =/=  A )  /\  ( M `  Z )
( K `  A
) Y )  -> 
( Z  e.  ( A I X )  \/  X  e.  ( A I Z ) ) )
8463, 64, 833jca 1242 . . . 4  |-  ( ( ( ph  /\  Z  =/=  A )  /\  ( M `  Z )
( K `  A
) Y )  -> 
( Z  =/=  A  /\  X  =/=  A  /\  ( Z  e.  ( A I X )  \/  X  e.  ( A I Z ) ) ) )
8550adantr 481 . . . 4  |-  ( ( ( ph  /\  Z  =/=  A )  /\  ( M `  Z )
( K `  A
) Y )  -> 
( Z ( K `
 A ) X  <-> 
( Z  =/=  A  /\  X  =/=  A  /\  ( Z  e.  ( A I X )  \/  X  e.  ( A I Z ) ) ) ) )
8684, 85mpbird 247 . . 3  |-  ( ( ( ph  /\  Z  =/=  A )  /\  ( M `  Z )
( K `  A
) Y )  ->  Z ( K `  A ) X )
8762, 86impbida 877 . 2  |-  ( (
ph  /\  Z  =/=  A )  ->  ( Z
( K `  A
) X  <->  ( M `  Z ) ( K `
 A ) Y ) )
8825, 87pm2.61dane 2881 1  |-  ( ph  ->  ( Z ( K `
 A ) X  <-> 
( M `  Z
) ( K `  A ) Y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  hlGchlg 25495  pInvGcmir 25547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-cgrg 25406  df-hlg 25496  df-mir 25548
This theorem is referenced by:  opphllem6  25644
  Copyright terms: Public domain W3C validator