MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mply1topmatval Structured version   Visualization version   Unicode version

Theorem mply1topmatval 20609
Description: A polynomial over matrices transformed into a polynomial matrix.  I is the inverse function of the transformation  T of polynomial matrices into polynomials over matrices:  ( T `  ( I `
 O ) )  =  O ) (see mp2pm2mp 20616). (Contributed by AV, 6-Oct-2019.)
Hypotheses
Ref Expression
mply1topmat.a  |-  A  =  ( N Mat  R )
mply1topmat.q  |-  Q  =  (Poly1 `  A )
mply1topmat.l  |-  L  =  ( Base `  Q
)
mply1topmat.p  |-  P  =  (Poly1 `  R )
mply1topmat.m  |-  .x.  =  ( .s `  P )
mply1topmat.e  |-  E  =  (.g `  (mulGrp `  P
) )
mply1topmat.y  |-  Y  =  (var1 `  R )
mply1topmat.i  |-  I  =  ( p  e.  L  |->  ( i  e.  N ,  j  e.  N  |->  ( P  gsumg  ( k  e.  NN0  |->  ( ( i ( (coe1 `  p ) `  k ) j ) 
.x.  ( k E Y ) ) ) ) ) )
Assertion
Ref Expression
mply1topmatval  |-  ( ( N  e.  V  /\  O  e.  L )  ->  ( I `  O
)  =  ( i  e.  N ,  j  e.  N  |->  ( P 
gsumg  ( k  e.  NN0  |->  ( ( i ( (coe1 `  O ) `  k ) j ) 
.x.  ( k E Y ) ) ) ) ) )
Distinct variable groups:    i, N, j, p    E, p    L, p    P, p    V, p    Y, p    i, O, j, k, p    .x. , k, p
Allowed substitution hints:    A( i, j, k, p)    P( i,
j, k)    Q( i,
j, k, p)    R( i, j, k, p)    .x. ( i,
j)    E( i, j, k)    I( i, j, k, p)    L( i, j, k)    N( k)    V( i, j, k)    Y( i, j, k)

Proof of Theorem mply1topmatval
StepHypRef Expression
1 mply1topmat.i . . 3  |-  I  =  ( p  e.  L  |->  ( i  e.  N ,  j  e.  N  |->  ( P  gsumg  ( k  e.  NN0  |->  ( ( i ( (coe1 `  p ) `  k ) j ) 
.x.  ( k E Y ) ) ) ) ) )
21a1i 11 . 2  |-  ( ( N  e.  V  /\  O  e.  L )  ->  I  =  ( p  e.  L  |->  ( i  e.  N ,  j  e.  N  |->  ( P 
gsumg  ( k  e.  NN0  |->  ( ( i ( (coe1 `  p ) `  k ) j ) 
.x.  ( k E Y ) ) ) ) ) ) )
3 fveq2 6191 . . . . . . . . 9  |-  ( p  =  O  ->  (coe1 `  p )  =  (coe1 `  O ) )
43fveq1d 6193 . . . . . . . 8  |-  ( p  =  O  ->  (
(coe1 `  p ) `  k )  =  ( (coe1 `  O ) `  k ) )
54oveqd 6667 . . . . . . 7  |-  ( p  =  O  ->  (
i ( (coe1 `  p
) `  k )
j )  =  ( i ( (coe1 `  O
) `  k )
j ) )
65oveq1d 6665 . . . . . 6  |-  ( p  =  O  ->  (
( i ( (coe1 `  p ) `  k
) j )  .x.  ( k E Y ) )  =  ( ( i ( (coe1 `  O ) `  k
) j )  .x.  ( k E Y ) ) )
76mpteq2dv 4745 . . . . 5  |-  ( p  =  O  ->  (
k  e.  NN0  |->  ( ( i ( (coe1 `  p
) `  k )
j )  .x.  (
k E Y ) ) )  =  ( k  e.  NN0  |->  ( ( i ( (coe1 `  O
) `  k )
j )  .x.  (
k E Y ) ) ) )
87oveq2d 6666 . . . 4  |-  ( p  =  O  ->  ( P  gsumg  ( k  e.  NN0  |->  ( ( i ( (coe1 `  p ) `  k ) j ) 
.x.  ( k E Y ) ) ) )  =  ( P 
gsumg  ( k  e.  NN0  |->  ( ( i ( (coe1 `  O ) `  k ) j ) 
.x.  ( k E Y ) ) ) ) )
98mpt2eq3dv 6721 . . 3  |-  ( p  =  O  ->  (
i  e.  N , 
j  e.  N  |->  ( P  gsumg  ( k  e.  NN0  |->  ( ( i ( (coe1 `  p ) `  k ) j ) 
.x.  ( k E Y ) ) ) ) )  =  ( i  e.  N , 
j  e.  N  |->  ( P  gsumg  ( k  e.  NN0  |->  ( ( i ( (coe1 `  O ) `  k ) j ) 
.x.  ( k E Y ) ) ) ) ) )
109adantl 482 . 2  |-  ( ( ( N  e.  V  /\  O  e.  L
)  /\  p  =  O )  ->  (
i  e.  N , 
j  e.  N  |->  ( P  gsumg  ( k  e.  NN0  |->  ( ( i ( (coe1 `  p ) `  k ) j ) 
.x.  ( k E Y ) ) ) ) )  =  ( i  e.  N , 
j  e.  N  |->  ( P  gsumg  ( k  e.  NN0  |->  ( ( i ( (coe1 `  O ) `  k ) j ) 
.x.  ( k E Y ) ) ) ) ) )
11 simpr 477 . 2  |-  ( ( N  e.  V  /\  O  e.  L )  ->  O  e.  L )
12 simpl 473 . . 3  |-  ( ( N  e.  V  /\  O  e.  L )  ->  N  e.  V )
13 mpt2exga 7246 . . 3  |-  ( ( N  e.  V  /\  N  e.  V )  ->  ( i  e.  N ,  j  e.  N  |->  ( P  gsumg  ( k  e.  NN0  |->  ( ( i ( (coe1 `  O ) `  k ) j ) 
.x.  ( k E Y ) ) ) ) )  e.  _V )
1412, 13syldan 487 . 2  |-  ( ( N  e.  V  /\  O  e.  L )  ->  ( i  e.  N ,  j  e.  N  |->  ( P  gsumg  ( k  e.  NN0  |->  ( ( i ( (coe1 `  O ) `  k ) j ) 
.x.  ( k E Y ) ) ) ) )  e.  _V )
152, 10, 11, 14fvmptd 6288 1  |-  ( ( N  e.  V  /\  O  e.  L )  ->  ( I `  O
)  =  ( i  e.  N ,  j  e.  N  |->  ( P 
gsumg  ( k  e.  NN0  |->  ( ( i ( (coe1 `  O ) `  k ) j ) 
.x.  ( k E Y ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   NN0cn0 11292   Basecbs 15857   .scvsca 15945    gsumg cgsu 16101  .gcmg 17540  mulGrpcmgp 18489  var1cv1 19546  Poly1cpl1 19547  coe1cco1 19548   Mat cmat 20213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169
This theorem is referenced by:  mply1topmatcl  20610
  Copyright terms: Public domain W3C validator