MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreacs Structured version   Visualization version   Unicode version

Theorem mreacs 16319
Description: Algebraicity is a composable property; combining several algebraic closure properties gives another. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
mreacs  |-  ( X  e.  V  ->  (ACS `  X )  e.  (Moore `  ~P X ) )

Proof of Theorem mreacs
Dummy variables  a 
b  c  x  d  e  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . 3  |-  ( x  =  X  ->  (ACS `  x )  =  (ACS
`  X ) )
2 pweq 4161 . . . 4  |-  ( x  =  X  ->  ~P x  =  ~P X
)
32fveq2d 6195 . . 3  |-  ( x  =  X  ->  (Moore `  ~P x )  =  (Moore `  ~P X ) )
41, 3eleq12d 2695 . 2  |-  ( x  =  X  ->  (
(ACS `  x )  e.  (Moore `  ~P x
)  <->  (ACS `  X )  e.  (Moore `  ~P X ) ) )
5 acsmre 16313 . . . . . . . 8  |-  ( a  e.  (ACS `  x
)  ->  a  e.  (Moore `  x ) )
6 mresspw 16252 . . . . . . . 8  |-  ( a  e.  (Moore `  x
)  ->  a  C_  ~P x )
75, 6syl 17 . . . . . . 7  |-  ( a  e.  (ACS `  x
)  ->  a  C_  ~P x )
8 selpw 4165 . . . . . . 7  |-  ( a  e.  ~P ~P x  <->  a 
C_  ~P x )
97, 8sylibr 224 . . . . . 6  |-  ( a  e.  (ACS `  x
)  ->  a  e.  ~P ~P x )
109ssriv 3607 . . . . 5  |-  (ACS `  x )  C_  ~P ~P x
1110a1i 11 . . . 4  |-  ( T. 
->  (ACS `  x )  C_ 
~P ~P x )
12 vex 3203 . . . . . . . 8  |-  x  e. 
_V
13 mremre 16264 . . . . . . . 8  |-  ( x  e.  _V  ->  (Moore `  x )  e.  (Moore `  ~P x ) )
1412, 13mp1i 13 . . . . . . 7  |-  ( a 
C_  (ACS `  x
)  ->  (Moore `  x
)  e.  (Moore `  ~P x ) )
155ssriv 3607 . . . . . . . 8  |-  (ACS `  x )  C_  (Moore `  x )
16 sstr 3611 . . . . . . . 8  |-  ( ( a  C_  (ACS `  x
)  /\  (ACS `  x
)  C_  (Moore `  x
) )  ->  a  C_  (Moore `  x )
)
1715, 16mpan2 707 . . . . . . 7  |-  ( a 
C_  (ACS `  x
)  ->  a  C_  (Moore `  x ) )
18 mrerintcl 16257 . . . . . . 7  |-  ( ( (Moore `  x )  e.  (Moore `  ~P x
)  /\  a  C_  (Moore `  x ) )  ->  ( ~P x  i^i  |^| a )  e.  (Moore `  x )
)
1914, 17, 18syl2anc 693 . . . . . 6  |-  ( a 
C_  (ACS `  x
)  ->  ( ~P x  i^i  |^| a )  e.  (Moore `  x )
)
20 ssel2 3598 . . . . . . . . . . . . . . . 16  |-  ( ( a  C_  (ACS `  x
)  /\  d  e.  a )  ->  d  e.  (ACS `  x )
)
2120acsmred 16317 . . . . . . . . . . . . . . 15  |-  ( ( a  C_  (ACS `  x
)  /\  d  e.  a )  ->  d  e.  (Moore `  x )
)
22 eqid 2622 . . . . . . . . . . . . . . 15  |-  (mrCls `  d )  =  (mrCls `  d )
2321, 22mrcssvd 16283 . . . . . . . . . . . . . 14  |-  ( ( a  C_  (ACS `  x
)  /\  d  e.  a )  ->  (
(mrCls `  d ) `  c )  C_  x
)
2423ralrimiva 2966 . . . . . . . . . . . . 13  |-  ( a 
C_  (ACS `  x
)  ->  A. d  e.  a  ( (mrCls `  d ) `  c
)  C_  x )
2524adantr 481 . . . . . . . . . . . 12  |-  ( ( a  C_  (ACS `  x
)  /\  c  e.  ~P x )  ->  A. d  e.  a  ( (mrCls `  d ) `  c
)  C_  x )
26 iunss 4561 . . . . . . . . . . . 12  |-  ( U_ d  e.  a  (
(mrCls `  d ) `  c )  C_  x  <->  A. d  e.  a  ( (mrCls `  d ) `  c )  C_  x
)
2725, 26sylibr 224 . . . . . . . . . . 11  |-  ( ( a  C_  (ACS `  x
)  /\  c  e.  ~P x )  ->  U_ d  e.  a  ( (mrCls `  d ) `  c
)  C_  x )
2812elpw2 4828 . . . . . . . . . . 11  |-  ( U_ d  e.  a  (
(mrCls `  d ) `  c )  e.  ~P x 
<-> 
U_ d  e.  a  ( (mrCls `  d
) `  c )  C_  x )
2927, 28sylibr 224 . . . . . . . . . 10  |-  ( ( a  C_  (ACS `  x
)  /\  c  e.  ~P x )  ->  U_ d  e.  a  ( (mrCls `  d ) `  c
)  e.  ~P x
)
30 eqid 2622 . . . . . . . . . 10  |-  ( c  e.  ~P x  |->  U_ d  e.  a  (
(mrCls `  d ) `  c ) )  =  ( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d
) `  c )
)
3129, 30fmptd 6385 . . . . . . . . 9  |-  ( a 
C_  (ACS `  x
)  ->  ( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d ) `  c
) ) : ~P x
--> ~P x )
32 fssxp 6060 . . . . . . . . 9  |-  ( ( c  e.  ~P x  |-> 
U_ d  e.  a  ( (mrCls `  d
) `  c )
) : ~P x --> ~P x  ->  ( c  e.  ~P x  |->  U_ d  e.  a  (
(mrCls `  d ) `  c ) )  C_  ( ~P x  X.  ~P x ) )
3331, 32syl 17 . . . . . . . 8  |-  ( a 
C_  (ACS `  x
)  ->  ( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d ) `  c
) )  C_  ( ~P x  X.  ~P x
) )
34 vpwex 4849 . . . . . . . . 9  |-  ~P x  e.  _V
3534, 34xpex 6962 . . . . . . . 8  |-  ( ~P x  X.  ~P x
)  e.  _V
36 ssexg 4804 . . . . . . . 8  |-  ( ( ( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d
) `  c )
)  C_  ( ~P x  X.  ~P x )  /\  ( ~P x  X.  ~P x )  e. 
_V )  ->  (
c  e.  ~P x  |-> 
U_ d  e.  a  ( (mrCls `  d
) `  c )
)  e.  _V )
3733, 35, 36sylancl 694 . . . . . . 7  |-  ( a 
C_  (ACS `  x
)  ->  ( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d ) `  c
) )  e.  _V )
3820adantlr 751 . . . . . . . . . . . . 13  |-  ( ( ( a  C_  (ACS `  x )  /\  b  e.  ~P x )  /\  d  e.  a )  ->  d  e.  (ACS `  x ) )
39 elpwi 4168 . . . . . . . . . . . . . 14  |-  ( b  e.  ~P x  -> 
b  C_  x )
4039ad2antlr 763 . . . . . . . . . . . . 13  |-  ( ( ( a  C_  (ACS `  x )  /\  b  e.  ~P x )  /\  d  e.  a )  ->  b  C_  x )
4122acsfiel2 16316 . . . . . . . . . . . . 13  |-  ( ( d  e.  (ACS `  x )  /\  b  C_  x )  ->  (
b  e.  d  <->  A. e  e.  ( ~P b  i^i 
Fin ) ( (mrCls `  d ) `  e
)  C_  b )
)
4238, 40, 41syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( a  C_  (ACS `  x )  /\  b  e.  ~P x )  /\  d  e.  a )  ->  ( b  e.  d  <->  A. e  e.  ( ~P b  i^i  Fin )
( (mrCls `  d
) `  e )  C_  b ) )
4342ralbidva 2985 . . . . . . . . . . 11  |-  ( ( a  C_  (ACS `  x
)  /\  b  e.  ~P x )  ->  ( A. d  e.  a 
b  e.  d  <->  A. d  e.  a  A. e  e.  ( ~P b  i^i 
Fin ) ( (mrCls `  d ) `  e
)  C_  b )
)
44 iunss 4561 . . . . . . . . . . . . 13  |-  ( U_ d  e.  a  (
(mrCls `  d ) `  e )  C_  b  <->  A. d  e.  a  ( (mrCls `  d ) `  e )  C_  b
)
4544ralbii 2980 . . . . . . . . . . . 12  |-  ( A. e  e.  ( ~P b  i^i  Fin ) U_ d  e.  a  (
(mrCls `  d ) `  e )  C_  b  <->  A. e  e.  ( ~P b  i^i  Fin ) A. d  e.  a 
( (mrCls `  d
) `  e )  C_  b )
46 ralcom 3098 . . . . . . . . . . . 12  |-  ( A. e  e.  ( ~P b  i^i  Fin ) A. d  e.  a  (
(mrCls `  d ) `  e )  C_  b  <->  A. d  e.  a  A. e  e.  ( ~P b  i^i  Fin ) ( (mrCls `  d ) `  e )  C_  b
)
4745, 46bitri 264 . . . . . . . . . . 11  |-  ( A. e  e.  ( ~P b  i^i  Fin ) U_ d  e.  a  (
(mrCls `  d ) `  e )  C_  b  <->  A. d  e.  a  A. e  e.  ( ~P b  i^i  Fin ) ( (mrCls `  d ) `  e )  C_  b
)
4843, 47syl6bbr 278 . . . . . . . . . 10  |-  ( ( a  C_  (ACS `  x
)  /\  b  e.  ~P x )  ->  ( A. d  e.  a 
b  e.  d  <->  A. e  e.  ( ~P b  i^i 
Fin ) U_ d  e.  a  ( (mrCls `  d ) `  e
)  C_  b )
)
49 elrint2 4519 . . . . . . . . . . 11  |-  ( b  e.  ~P x  -> 
( b  e.  ( ~P x  i^i  |^| a )  <->  A. d  e.  a  b  e.  d ) )
5049adantl 482 . . . . . . . . . 10  |-  ( ( a  C_  (ACS `  x
)  /\  b  e.  ~P x )  ->  (
b  e.  ( ~P x  i^i  |^| a
)  <->  A. d  e.  a  b  e.  d ) )
51 funmpt 5926 . . . . . . . . . . . . 13  |-  Fun  (
c  e.  ~P x  |-> 
U_ d  e.  a  ( (mrCls `  d
) `  c )
)
52 funiunfv 6506 . . . . . . . . . . . . 13  |-  ( Fun  ( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d
) `  c )
)  ->  U_ e  e.  ( ~P b  i^i 
Fin ) ( ( c  e.  ~P x  |-> 
U_ d  e.  a  ( (mrCls `  d
) `  c )
) `  e )  =  U. ( ( c  e.  ~P x  |->  U_ d  e.  a  (
(mrCls `  d ) `  c ) ) "
( ~P b  i^i 
Fin ) ) )
5351, 52ax-mp 5 . . . . . . . . . . . 12  |-  U_ e  e.  ( ~P b  i^i 
Fin ) ( ( c  e.  ~P x  |-> 
U_ d  e.  a  ( (mrCls `  d
) `  c )
) `  e )  =  U. ( ( c  e.  ~P x  |->  U_ d  e.  a  (
(mrCls `  d ) `  c ) ) "
( ~P b  i^i 
Fin ) )
5453sseq1i 3629 . . . . . . . . . . 11  |-  ( U_ e  e.  ( ~P b  i^i  Fin ) ( ( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d
) `  c )
) `  e )  C_  b  <->  U. ( ( c  e.  ~P x  |->  U_ d  e.  a  (
(mrCls `  d ) `  c ) ) "
( ~P b  i^i 
Fin ) )  C_  b )
55 iunss 4561 . . . . . . . . . . . 12  |-  ( U_ e  e.  ( ~P b  i^i  Fin ) ( ( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d
) `  c )
) `  e )  C_  b  <->  A. e  e.  ( ~P b  i^i  Fin ) ( ( c  e.  ~P x  |->  U_ d  e.  a  (
(mrCls `  d ) `  c ) ) `  e )  C_  b
)
56 inss1 3833 . . . . . . . . . . . . . . . . 17  |-  ( ~P b  i^i  Fin )  C_ 
~P b
57 sspwb 4917 . . . . . . . . . . . . . . . . . . 19  |-  ( b 
C_  x  <->  ~P b  C_ 
~P x )
5839, 57sylib 208 . . . . . . . . . . . . . . . . . 18  |-  ( b  e.  ~P x  ->  ~P b  C_  ~P x
)
5958adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( a  C_  (ACS `  x
)  /\  b  e.  ~P x )  ->  ~P b  C_  ~P x )
6056, 59syl5ss 3614 . . . . . . . . . . . . . . . 16  |-  ( ( a  C_  (ACS `  x
)  /\  b  e.  ~P x )  ->  ( ~P b  i^i  Fin )  C_ 
~P x )
6160sselda 3603 . . . . . . . . . . . . . . 15  |-  ( ( ( a  C_  (ACS `  x )  /\  b  e.  ~P x )  /\  e  e.  ( ~P b  i^i  Fin ) )  ->  e  e.  ~P x )
6221, 22mrcssvd 16283 . . . . . . . . . . . . . . . . . . 19  |-  ( ( a  C_  (ACS `  x
)  /\  d  e.  a )  ->  (
(mrCls `  d ) `  e )  C_  x
)
6362ralrimiva 2966 . . . . . . . . . . . . . . . . . 18  |-  ( a 
C_  (ACS `  x
)  ->  A. d  e.  a  ( (mrCls `  d ) `  e
)  C_  x )
6463ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  C_  (ACS `  x )  /\  b  e.  ~P x )  /\  e  e.  ( ~P b  i^i  Fin ) )  ->  A. d  e.  a  ( (mrCls `  d
) `  e )  C_  x )
65 iunss 4561 . . . . . . . . . . . . . . . . 17  |-  ( U_ d  e.  a  (
(mrCls `  d ) `  e )  C_  x  <->  A. d  e.  a  ( (mrCls `  d ) `  e )  C_  x
)
6664, 65sylibr 224 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  C_  (ACS `  x )  /\  b  e.  ~P x )  /\  e  e.  ( ~P b  i^i  Fin ) )  ->  U_ d  e.  a  ( (mrCls `  d
) `  e )  C_  x )
67 ssexg 4804 . . . . . . . . . . . . . . . 16  |-  ( (
U_ d  e.  a  ( (mrCls `  d
) `  e )  C_  x  /\  x  e. 
_V )  ->  U_ d  e.  a  ( (mrCls `  d ) `  e
)  e.  _V )
6866, 12, 67sylancl 694 . . . . . . . . . . . . . . 15  |-  ( ( ( a  C_  (ACS `  x )  /\  b  e.  ~P x )  /\  e  e.  ( ~P b  i^i  Fin ) )  ->  U_ d  e.  a  ( (mrCls `  d
) `  e )  e.  _V )
69 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( c  =  e  ->  (
(mrCls `  d ) `  c )  =  ( (mrCls `  d ) `  e ) )
7069iuneq2d 4547 . . . . . . . . . . . . . . . 16  |-  ( c  =  e  ->  U_ d  e.  a  ( (mrCls `  d ) `  c
)  =  U_ d  e.  a  ( (mrCls `  d ) `  e
) )
7170, 30fvmptg 6280 . . . . . . . . . . . . . . 15  |-  ( ( e  e.  ~P x  /\  U_ d  e.  a  ( (mrCls `  d
) `  e )  e.  _V )  ->  (
( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d
) `  c )
) `  e )  =  U_ d  e.  a  ( (mrCls `  d
) `  e )
)
7261, 68, 71syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( a  C_  (ACS `  x )  /\  b  e.  ~P x )  /\  e  e.  ( ~P b  i^i  Fin ) )  ->  ( ( c  e.  ~P x  |->  U_ d  e.  a  (
(mrCls `  d ) `  c ) ) `  e )  =  U_ d  e.  a  (
(mrCls `  d ) `  e ) )
7372sseq1d 3632 . . . . . . . . . . . . 13  |-  ( ( ( a  C_  (ACS `  x )  /\  b  e.  ~P x )  /\  e  e.  ( ~P b  i^i  Fin ) )  ->  ( ( ( c  e.  ~P x  |-> 
U_ d  e.  a  ( (mrCls `  d
) `  c )
) `  e )  C_  b  <->  U_ d  e.  a  ( (mrCls `  d
) `  e )  C_  b ) )
7473ralbidva 2985 . . . . . . . . . . . 12  |-  ( ( a  C_  (ACS `  x
)  /\  b  e.  ~P x )  ->  ( A. e  e.  ( ~P b  i^i  Fin )
( ( c  e. 
~P x  |->  U_ d  e.  a  ( (mrCls `  d ) `  c
) ) `  e
)  C_  b  <->  A. e  e.  ( ~P b  i^i 
Fin ) U_ d  e.  a  ( (mrCls `  d ) `  e
)  C_  b )
)
7555, 74syl5bb 272 . . . . . . . . . . 11  |-  ( ( a  C_  (ACS `  x
)  /\  b  e.  ~P x )  ->  ( U_ e  e.  ( ~P b  i^i  Fin )
( ( c  e. 
~P x  |->  U_ d  e.  a  ( (mrCls `  d ) `  c
) ) `  e
)  C_  b  <->  A. e  e.  ( ~P b  i^i 
Fin ) U_ d  e.  a  ( (mrCls `  d ) `  e
)  C_  b )
)
7654, 75syl5bbr 274 . . . . . . . . . 10  |-  ( ( a  C_  (ACS `  x
)  /\  b  e.  ~P x )  ->  ( U. ( ( c  e. 
~P x  |->  U_ d  e.  a  ( (mrCls `  d ) `  c
) ) " ( ~P b  i^i  Fin )
)  C_  b  <->  A. e  e.  ( ~P b  i^i 
Fin ) U_ d  e.  a  ( (mrCls `  d ) `  e
)  C_  b )
)
7748, 50, 763bitr4d 300 . . . . . . . . 9  |-  ( ( a  C_  (ACS `  x
)  /\  b  e.  ~P x )  ->  (
b  e.  ( ~P x  i^i  |^| a
)  <->  U. ( ( c  e.  ~P x  |->  U_ d  e.  a  (
(mrCls `  d ) `  c ) ) "
( ~P b  i^i 
Fin ) )  C_  b ) )
7877ralrimiva 2966 . . . . . . . 8  |-  ( a 
C_  (ACS `  x
)  ->  A. b  e.  ~P  x ( b  e.  ( ~P x  i^i  |^| a )  <->  U. (
( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d
) `  c )
) " ( ~P b  i^i  Fin )
)  C_  b )
)
7931, 78jca 554 . . . . . . 7  |-  ( a 
C_  (ACS `  x
)  ->  ( (
c  e.  ~P x  |-> 
U_ d  e.  a  ( (mrCls `  d
) `  c )
) : ~P x --> ~P x  /\  A. b  e.  ~P  x ( b  e.  ( ~P x  i^i  |^| a )  <->  U. (
( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d
) `  c )
) " ( ~P b  i^i  Fin )
)  C_  b )
) )
80 feq1 6026 . . . . . . . . 9  |-  ( f  =  ( c  e. 
~P x  |->  U_ d  e.  a  ( (mrCls `  d ) `  c
) )  ->  (
f : ~P x --> ~P x  <->  ( c  e. 
~P x  |->  U_ d  e.  a  ( (mrCls `  d ) `  c
) ) : ~P x
--> ~P x ) )
81 imaeq1 5461 . . . . . . . . . . . . 13  |-  ( f  =  ( c  e. 
~P x  |->  U_ d  e.  a  ( (mrCls `  d ) `  c
) )  ->  (
f " ( ~P b  i^i  Fin )
)  =  ( ( c  e.  ~P x  |-> 
U_ d  e.  a  ( (mrCls `  d
) `  c )
) " ( ~P b  i^i  Fin )
) )
8281unieqd 4446 . . . . . . . . . . . 12  |-  ( f  =  ( c  e. 
~P x  |->  U_ d  e.  a  ( (mrCls `  d ) `  c
) )  ->  U. (
f " ( ~P b  i^i  Fin )
)  =  U. (
( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d
) `  c )
) " ( ~P b  i^i  Fin )
) )
8382sseq1d 3632 . . . . . . . . . . 11  |-  ( f  =  ( c  e. 
~P x  |->  U_ d  e.  a  ( (mrCls `  d ) `  c
) )  ->  ( U. ( f " ( ~P b  i^i  Fin )
)  C_  b  <->  U. (
( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d
) `  c )
) " ( ~P b  i^i  Fin )
)  C_  b )
)
8483bibi2d 332 . . . . . . . . . 10  |-  ( f  =  ( c  e. 
~P x  |->  U_ d  e.  a  ( (mrCls `  d ) `  c
) )  ->  (
( b  e.  ( ~P x  i^i  |^| a )  <->  U. (
f " ( ~P b  i^i  Fin )
)  C_  b )  <->  ( b  e.  ( ~P x  i^i  |^| a
)  <->  U. ( ( c  e.  ~P x  |->  U_ d  e.  a  (
(mrCls `  d ) `  c ) ) "
( ~P b  i^i 
Fin ) )  C_  b ) ) )
8584ralbidv 2986 . . . . . . . . 9  |-  ( f  =  ( c  e. 
~P x  |->  U_ d  e.  a  ( (mrCls `  d ) `  c
) )  ->  ( A. b  e.  ~P  x ( b  e.  ( ~P x  i^i  |^| a )  <->  U. (
f " ( ~P b  i^i  Fin )
)  C_  b )  <->  A. b  e.  ~P  x
( b  e.  ( ~P x  i^i  |^| a )  <->  U. (
( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d
) `  c )
) " ( ~P b  i^i  Fin )
)  C_  b )
) )
8680, 85anbi12d 747 . . . . . . . 8  |-  ( f  =  ( c  e. 
~P x  |->  U_ d  e.  a  ( (mrCls `  d ) `  c
) )  ->  (
( f : ~P x
--> ~P x  /\  A. b  e.  ~P  x
( b  e.  ( ~P x  i^i  |^| a )  <->  U. (
f " ( ~P b  i^i  Fin )
)  C_  b )
)  <->  ( ( c  e.  ~P x  |->  U_ d  e.  a  (
(mrCls `  d ) `  c ) ) : ~P x --> ~P x  /\  A. b  e.  ~P  x ( b  e.  ( ~P x  i^i  |^| a )  <->  U. (
( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d
) `  c )
) " ( ~P b  i^i  Fin )
)  C_  b )
) ) )
8786spcegv 3294 . . . . . . 7  |-  ( ( c  e.  ~P x  |-> 
U_ d  e.  a  ( (mrCls `  d
) `  c )
)  e.  _V  ->  ( ( ( c  e. 
~P x  |->  U_ d  e.  a  ( (mrCls `  d ) `  c
) ) : ~P x
--> ~P x  /\  A. b  e.  ~P  x
( b  e.  ( ~P x  i^i  |^| a )  <->  U. (
( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d
) `  c )
) " ( ~P b  i^i  Fin )
)  C_  b )
)  ->  E. f
( f : ~P x
--> ~P x  /\  A. b  e.  ~P  x
( b  e.  ( ~P x  i^i  |^| a )  <->  U. (
f " ( ~P b  i^i  Fin )
)  C_  b )
) ) )
8837, 79, 87sylc 65 . . . . . 6  |-  ( a 
C_  (ACS `  x
)  ->  E. f
( f : ~P x
--> ~P x  /\  A. b  e.  ~P  x
( b  e.  ( ~P x  i^i  |^| a )  <->  U. (
f " ( ~P b  i^i  Fin )
)  C_  b )
) )
89 isacs 16312 . . . . . 6  |-  ( ( ~P x  i^i  |^| a )  e.  (ACS
`  x )  <->  ( ( ~P x  i^i  |^| a
)  e.  (Moore `  x )  /\  E. f ( f : ~P x --> ~P x  /\  A. b  e.  ~P  x ( b  e.  ( ~P x  i^i  |^| a )  <->  U. (
f " ( ~P b  i^i  Fin )
)  C_  b )
) ) )
9019, 88, 89sylanbrc 698 . . . . 5  |-  ( a 
C_  (ACS `  x
)  ->  ( ~P x  i^i  |^| a )  e.  (ACS `  x )
)
9190adantl 482 . . . 4  |-  ( ( T.  /\  a  C_  (ACS `  x ) )  ->  ( ~P x  i^i  |^| a )  e.  (ACS `  x )
)
9211, 91ismred2 16263 . . 3  |-  ( T. 
->  (ACS `  x )  e.  (Moore `  ~P x
) )
9392trud 1493 . 2  |-  (ACS `  x )  e.  (Moore `  ~P x )
944, 93vtoclg 3266 1  |-  ( X  e.  V  ->  (ACS `  X )  e.  (Moore `  ~P X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   T. wtru 1484   E.wex 1704    e. wcel 1990   A.wral 2912   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   |^|cint 4475   U_ciun 4520    |-> cmpt 4729    X. cxp 5112   "cima 5117   Fun wfun 5882   -->wf 5884   ` cfv 5888   Fincfn 7955  Moorecmre 16242  mrClscmrc 16243  ACScacs 16245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-mre 16246  df-mrc 16247  df-acs 16249
This theorem is referenced by:  acsfn1  16322  acsfn1c  16323  acsfn2  16324  submacs  17365  subgacs  17629  nsgacs  17630  lssacs  18967  acsfn1p  37769  subrgacs  37770  sdrgacs  37771
  Copyright terms: Public domain W3C validator