Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msrfval Structured version   Visualization version   Unicode version

Theorem msrfval 31434
Description: Value of the reduct of a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msrfval.v  |-  V  =  (mVars `  T )
msrfval.p  |-  P  =  (mPreSt `  T )
msrfval.r  |-  R  =  (mStRed `  T )
Assertion
Ref Expression
msrfval  |-  R  =  ( s  e.  P  |-> 
[_ ( 2nd `  ( 1st `  s ) )  /  h ]_ [_ ( 2nd `  s )  / 
a ]_ <. ( ( 1st `  ( 1st `  s
) )  i^i  [_ U. ( V " ( h  u.  { a } ) )  /  z ]_ ( z  X.  z
) ) ,  h ,  a >. )
Distinct variable groups:    h, a,
s, z, P    T, a, h, s    z, V
Allowed substitution hints:    R( z, h, s, a)    T( z)    V( h, s, a)

Proof of Theorem msrfval
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 msrfval.r . 2  |-  R  =  (mStRed `  T )
2 fveq2 6191 . . . . . 6  |-  ( t  =  T  ->  (mPreSt `  t )  =  (mPreSt `  T ) )
3 msrfval.p . . . . . 6  |-  P  =  (mPreSt `  T )
42, 3syl6eqr 2674 . . . . 5  |-  ( t  =  T  ->  (mPreSt `  t )  =  P )
5 fveq2 6191 . . . . . . . . . . . . 13  |-  ( t  =  T  ->  (mVars `  t )  =  (mVars `  T ) )
6 msrfval.v . . . . . . . . . . . . 13  |-  V  =  (mVars `  T )
75, 6syl6eqr 2674 . . . . . . . . . . . 12  |-  ( t  =  T  ->  (mVars `  t )  =  V )
87imaeq1d 5465 . . . . . . . . . . 11  |-  ( t  =  T  ->  (
(mVars `  t ) " ( h  u. 
{ a } ) )  =  ( V
" ( h  u. 
{ a } ) ) )
98unieqd 4446 . . . . . . . . . 10  |-  ( t  =  T  ->  U. (
(mVars `  t ) " ( h  u. 
{ a } ) )  =  U. ( V " ( h  u. 
{ a } ) ) )
109csbeq1d 3540 . . . . . . . . 9  |-  ( t  =  T  ->  [_ U. ( (mVars `  t ) " ( h  u. 
{ a } ) )  /  z ]_ ( z  X.  z
)  =  [_ U. ( V " ( h  u.  { a } ) )  /  z ]_ ( z  X.  z
) )
1110ineq2d 3814 . . . . . . . 8  |-  ( t  =  T  ->  (
( 1st `  ( 1st `  s ) )  i^i  [_ U. ( (mVars `  t ) " (
h  u.  { a } ) )  / 
z ]_ ( z  X.  z ) )  =  ( ( 1st `  ( 1st `  s ) )  i^i  [_ U. ( V
" ( h  u. 
{ a } ) )  /  z ]_ ( z  X.  z
) ) )
1211oteq1d 4414 . . . . . . 7  |-  ( t  =  T  ->  <. (
( 1st `  ( 1st `  s ) )  i^i  [_ U. ( (mVars `  t ) " (
h  u.  { a } ) )  / 
z ]_ ( z  X.  z ) ) ,  h ,  a >.  =  <. ( ( 1st `  ( 1st `  s
) )  i^i  [_ U. ( V " ( h  u.  { a } ) )  /  z ]_ ( z  X.  z
) ) ,  h ,  a >. )
1312csbeq2dv 3992 . . . . . 6  |-  ( t  =  T  ->  [_ ( 2nd `  s )  / 
a ]_ <. ( ( 1st `  ( 1st `  s
) )  i^i  [_ U. ( (mVars `  t ) " ( h  u. 
{ a } ) )  /  z ]_ ( z  X.  z
) ) ,  h ,  a >.  =  [_ ( 2nd `  s )  /  a ]_ <. ( ( 1st `  ( 1st `  s ) )  i^i  [_ U. ( V
" ( h  u. 
{ a } ) )  /  z ]_ ( z  X.  z
) ) ,  h ,  a >. )
1413csbeq2dv 3992 . . . . 5  |-  ( t  =  T  ->  [_ ( 2nd `  ( 1st `  s
) )  /  h ]_ [_ ( 2nd `  s
)  /  a ]_ <. ( ( 1st `  ( 1st `  s ) )  i^i  [_ U. ( (mVars `  t ) " (
h  u.  { a } ) )  / 
z ]_ ( z  X.  z ) ) ,  h ,  a >.  =  [_ ( 2nd `  ( 1st `  s ) )  /  h ]_ [_ ( 2nd `  s )  / 
a ]_ <. ( ( 1st `  ( 1st `  s
) )  i^i  [_ U. ( V " ( h  u.  { a } ) )  /  z ]_ ( z  X.  z
) ) ,  h ,  a >. )
154, 14mpteq12dv 4733 . . . 4  |-  ( t  =  T  ->  (
s  e.  (mPreSt `  t )  |->  [_ ( 2nd `  ( 1st `  s
) )  /  h ]_ [_ ( 2nd `  s
)  /  a ]_ <. ( ( 1st `  ( 1st `  s ) )  i^i  [_ U. ( (mVars `  t ) " (
h  u.  { a } ) )  / 
z ]_ ( z  X.  z ) ) ,  h ,  a >.
)  =  ( s  e.  P  |->  [_ ( 2nd `  ( 1st `  s
) )  /  h ]_ [_ ( 2nd `  s
)  /  a ]_ <. ( ( 1st `  ( 1st `  s ) )  i^i  [_ U. ( V
" ( h  u. 
{ a } ) )  /  z ]_ ( z  X.  z
) ) ,  h ,  a >. )
)
16 df-msr 31391 . . . 4  |- mStRed  =  ( t  e.  _V  |->  ( s  e.  (mPreSt `  t )  |->  [_ ( 2nd `  ( 1st `  s
) )  /  h ]_ [_ ( 2nd `  s
)  /  a ]_ <. ( ( 1st `  ( 1st `  s ) )  i^i  [_ U. ( (mVars `  t ) " (
h  u.  { a } ) )  / 
z ]_ ( z  X.  z ) ) ,  h ,  a >.
) )
17 fvex 6201 . . . . . 6  |-  (mPreSt `  T )  e.  _V
183, 17eqeltri 2697 . . . . 5  |-  P  e. 
_V
1918mptex 6486 . . . 4  |-  ( s  e.  P  |->  [_ ( 2nd `  ( 1st `  s
) )  /  h ]_ [_ ( 2nd `  s
)  /  a ]_ <. ( ( 1st `  ( 1st `  s ) )  i^i  [_ U. ( V
" ( h  u. 
{ a } ) )  /  z ]_ ( z  X.  z
) ) ,  h ,  a >. )  e.  _V
2015, 16, 19fvmpt 6282 . . 3  |-  ( T  e.  _V  ->  (mStRed `  T )  =  ( s  e.  P  |->  [_ ( 2nd `  ( 1st `  s ) )  /  h ]_ [_ ( 2nd `  s )  /  a ]_ <. ( ( 1st `  ( 1st `  s
) )  i^i  [_ U. ( V " ( h  u.  { a } ) )  /  z ]_ ( z  X.  z
) ) ,  h ,  a >. )
)
21 mpt0 6021 . . . . 5  |-  ( s  e.  (/)  |->  [_ ( 2nd `  ( 1st `  s ) )  /  h ]_ [_ ( 2nd `  s )  / 
a ]_ <. ( ( 1st `  ( 1st `  s
) )  i^i  [_ U. ( V " ( h  u.  { a } ) )  /  z ]_ ( z  X.  z
) ) ,  h ,  a >. )  =  (/)
2221eqcomi 2631 . . . 4  |-  (/)  =  ( s  e.  (/)  |->  [_ ( 2nd `  ( 1st `  s
) )  /  h ]_ [_ ( 2nd `  s
)  /  a ]_ <. ( ( 1st `  ( 1st `  s ) )  i^i  [_ U. ( V
" ( h  u. 
{ a } ) )  /  z ]_ ( z  X.  z
) ) ,  h ,  a >. )
23 fvprc 6185 . . . 4  |-  ( -.  T  e.  _V  ->  (mStRed `  T )  =  (/) )
24 fvprc 6185 . . . . . 6  |-  ( -.  T  e.  _V  ->  (mPreSt `  T )  =  (/) )
253, 24syl5eq 2668 . . . . 5  |-  ( -.  T  e.  _V  ->  P  =  (/) )
2625mpteq1d 4738 . . . 4  |-  ( -.  T  e.  _V  ->  ( s  e.  P  |->  [_ ( 2nd `  ( 1st `  s ) )  /  h ]_ [_ ( 2nd `  s )  /  a ]_ <. ( ( 1st `  ( 1st `  s
) )  i^i  [_ U. ( V " ( h  u.  { a } ) )  /  z ]_ ( z  X.  z
) ) ,  h ,  a >. )  =  ( s  e.  (/)  |->  [_ ( 2nd `  ( 1st `  s ) )  /  h ]_ [_ ( 2nd `  s )  / 
a ]_ <. ( ( 1st `  ( 1st `  s
) )  i^i  [_ U. ( V " ( h  u.  { a } ) )  /  z ]_ ( z  X.  z
) ) ,  h ,  a >. )
)
2722, 23, 263eqtr4a 2682 . . 3  |-  ( -.  T  e.  _V  ->  (mStRed `  T )  =  ( s  e.  P  |->  [_ ( 2nd `  ( 1st `  s ) )  /  h ]_ [_ ( 2nd `  s )  /  a ]_ <. ( ( 1st `  ( 1st `  s
) )  i^i  [_ U. ( V " ( h  u.  { a } ) )  /  z ]_ ( z  X.  z
) ) ,  h ,  a >. )
)
2820, 27pm2.61i 176 . 2  |-  (mStRed `  T )  =  ( s  e.  P  |->  [_ ( 2nd `  ( 1st `  s ) )  /  h ]_ [_ ( 2nd `  s )  /  a ]_ <. ( ( 1st `  ( 1st `  s
) )  i^i  [_ U. ( V " ( h  u.  { a } ) )  /  z ]_ ( z  X.  z
) ) ,  h ,  a >. )
291, 28eqtri 2644 1  |-  R  =  ( s  e.  P  |-> 
[_ ( 2nd `  ( 1st `  s ) )  /  h ]_ [_ ( 2nd `  s )  / 
a ]_ <. ( ( 1st `  ( 1st `  s
) )  i^i  [_ U. ( V " ( h  u.  { a } ) )  /  z ]_ ( z  X.  z
) ) ,  h ,  a >. )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   _Vcvv 3200   [_csb 3533    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177   <.cotp 4185   U.cuni 4436    |-> cmpt 4729    X. cxp 5112   "cima 5117   ` cfv 5888   1stc1st 7166   2ndc2nd 7167  mVarscmvrs 31366  mPreStcmpst 31370  mStRedcmsr 31371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-ot 4186  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-msr 31391
This theorem is referenced by:  msrval  31435  msrf  31439
  Copyright terms: Public domain W3C validator