Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubfval Structured version   Visualization version   Unicode version

Theorem msubfval 31421
Description: A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubffval.v  |-  V  =  (mVR `  T )
msubffval.r  |-  R  =  (mREx `  T )
msubffval.s  |-  S  =  (mSubst `  T )
msubffval.e  |-  E  =  (mEx `  T )
msubffval.o  |-  O  =  (mRSubst `  T )
Assertion
Ref Expression
msubfval  |-  ( ( F : A --> R  /\  A  C_  V )  -> 
( S `  F
)  =  ( e  e.  E  |->  <. ( 1st `  e ) ,  ( ( O `  F ) `  ( 2nd `  e ) )
>. ) )
Distinct variable groups:    e, E    e, O    R, e    T, e   
e, V    A, e    e, F
Allowed substitution hint:    S( e)

Proof of Theorem msubfval
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 msubffval.v . . . . . 6  |-  V  =  (mVR `  T )
2 msubffval.r . . . . . 6  |-  R  =  (mREx `  T )
3 msubffval.s . . . . . 6  |-  S  =  (mSubst `  T )
4 msubffval.e . . . . . 6  |-  E  =  (mEx `  T )
5 msubffval.o . . . . . 6  |-  O  =  (mRSubst `  T )
61, 2, 3, 4, 5msubffval 31420 . . . . 5  |-  ( T  e.  _V  ->  S  =  ( f  e.  ( R  ^pm  V
)  |->  ( e  e.  E  |->  <. ( 1st `  e
) ,  ( ( O `  f ) `
 ( 2nd `  e
) ) >. )
) )
76adantr 481 . . . 4  |-  ( ( T  e.  _V  /\  ( F : A --> R  /\  A  C_  V ) )  ->  S  =  ( f  e.  ( R 
^pm  V )  |->  ( e  e.  E  |->  <.
( 1st `  e
) ,  ( ( O `  f ) `
 ( 2nd `  e
) ) >. )
) )
8 simplr 792 . . . . . . . 8  |-  ( ( ( ( T  e. 
_V  /\  ( F : A --> R  /\  A  C_  V ) )  /\  f  =  F )  /\  e  e.  E
)  ->  f  =  F )
98fveq2d 6195 . . . . . . 7  |-  ( ( ( ( T  e. 
_V  /\  ( F : A --> R  /\  A  C_  V ) )  /\  f  =  F )  /\  e  e.  E
)  ->  ( O `  f )  =  ( O `  F ) )
109fveq1d 6193 . . . . . 6  |-  ( ( ( ( T  e. 
_V  /\  ( F : A --> R  /\  A  C_  V ) )  /\  f  =  F )  /\  e  e.  E
)  ->  ( ( O `  f ) `  ( 2nd `  e
) )  =  ( ( O `  F
) `  ( 2nd `  e ) ) )
1110opeq2d 4409 . . . . 5  |-  ( ( ( ( T  e. 
_V  /\  ( F : A --> R  /\  A  C_  V ) )  /\  f  =  F )  /\  e  e.  E
)  ->  <. ( 1st `  e ) ,  ( ( O `  f
) `  ( 2nd `  e ) ) >.  =  <. ( 1st `  e
) ,  ( ( O `  F ) `
 ( 2nd `  e
) ) >. )
1211mpteq2dva 4744 . . . 4  |-  ( ( ( T  e.  _V  /\  ( F : A --> R  /\  A  C_  V
) )  /\  f  =  F )  ->  (
e  e.  E  |->  <.
( 1st `  e
) ,  ( ( O `  f ) `
 ( 2nd `  e
) ) >. )  =  ( e  e.  E  |->  <. ( 1st `  e
) ,  ( ( O `  F ) `
 ( 2nd `  e
) ) >. )
)
13 fvex 6201 . . . . . . . 8  |-  (mREx `  T )  e.  _V
142, 13eqeltri 2697 . . . . . . 7  |-  R  e. 
_V
15 fvex 6201 . . . . . . . 8  |-  (mVR `  T )  e.  _V
161, 15eqeltri 2697 . . . . . . 7  |-  V  e. 
_V
1714, 16pm3.2i 471 . . . . . 6  |-  ( R  e.  _V  /\  V  e.  _V )
1817a1i 11 . . . . 5  |-  ( T  e.  _V  ->  ( R  e.  _V  /\  V  e.  _V ) )
19 elpm2r 7875 . . . . 5  |-  ( ( ( R  e.  _V  /\  V  e.  _V )  /\  ( F : A --> R  /\  A  C_  V
) )  ->  F  e.  ( R  ^pm  V
) )
2018, 19sylan 488 . . . 4  |-  ( ( T  e.  _V  /\  ( F : A --> R  /\  A  C_  V ) )  ->  F  e.  ( R  ^pm  V )
)
21 fvex 6201 . . . . . . 7  |-  (mEx `  T )  e.  _V
224, 21eqeltri 2697 . . . . . 6  |-  E  e. 
_V
2322mptex 6486 . . . . 5  |-  ( e  e.  E  |->  <. ( 1st `  e ) ,  ( ( O `  F ) `  ( 2nd `  e ) )
>. )  e.  _V
2423a1i 11 . . . 4  |-  ( ( T  e.  _V  /\  ( F : A --> R  /\  A  C_  V ) )  ->  ( e  e.  E  |->  <. ( 1st `  e
) ,  ( ( O `  F ) `
 ( 2nd `  e
) ) >. )  e.  _V )
257, 12, 20, 24fvmptd 6288 . . 3  |-  ( ( T  e.  _V  /\  ( F : A --> R  /\  A  C_  V ) )  ->  ( S `  F )  =  ( e  e.  E  |->  <.
( 1st `  e
) ,  ( ( O `  F ) `
 ( 2nd `  e
) ) >. )
)
2625ex 450 . 2  |-  ( T  e.  _V  ->  (
( F : A --> R  /\  A  C_  V
)  ->  ( S `  F )  =  ( e  e.  E  |->  <.
( 1st `  e
) ,  ( ( O `  F ) `
 ( 2nd `  e
) ) >. )
) )
27 0fv 6227 . . . . 5  |-  ( (/) `  F )  =  (/)
28 mpt0 6021 . . . . 5  |-  ( e  e.  (/)  |->  <. ( 1st `  e
) ,  ( ( O `  F ) `
 ( 2nd `  e
) ) >. )  =  (/)
2927, 28eqtr4i 2647 . . . 4  |-  ( (/) `  F )  =  ( e  e.  (/)  |->  <. ( 1st `  e ) ,  ( ( O `  F ) `  ( 2nd `  e ) )
>. )
30 fvprc 6185 . . . . . 6  |-  ( -.  T  e.  _V  ->  (mSubst `  T )  =  (/) )
313, 30syl5eq 2668 . . . . 5  |-  ( -.  T  e.  _V  ->  S  =  (/) )
3231fveq1d 6193 . . . 4  |-  ( -.  T  e.  _V  ->  ( S `  F )  =  ( (/) `  F
) )
33 fvprc 6185 . . . . . 6  |-  ( -.  T  e.  _V  ->  (mEx
`  T )  =  (/) )
344, 33syl5eq 2668 . . . . 5  |-  ( -.  T  e.  _V  ->  E  =  (/) )
3534mpteq1d 4738 . . . 4  |-  ( -.  T  e.  _V  ->  ( e  e.  E  |->  <.
( 1st `  e
) ,  ( ( O `  F ) `
 ( 2nd `  e
) ) >. )  =  ( e  e.  (/)  |->  <. ( 1st `  e
) ,  ( ( O `  F ) `
 ( 2nd `  e
) ) >. )
)
3629, 32, 353eqtr4a 2682 . . 3  |-  ( -.  T  e.  _V  ->  ( S `  F )  =  ( e  e.  E  |->  <. ( 1st `  e
) ,  ( ( O `  F ) `
 ( 2nd `  e
) ) >. )
)
3736a1d 25 . 2  |-  ( -.  T  e.  _V  ->  ( ( F : A --> R  /\  A  C_  V
)  ->  ( S `  F )  =  ( e  e.  E  |->  <.
( 1st `  e
) ,  ( ( O `  F ) `
 ( 2nd `  e
) ) >. )
) )
3826, 37pm2.61i 176 1  |-  ( ( F : A --> R  /\  A  C_  V )  -> 
( S `  F
)  =  ( e  e.  E  |->  <. ( 1st `  e ) ,  ( ( O `  F ) `  ( 2nd `  e ) )
>. ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   (/)c0 3915   <.cop 4183    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167    ^pm cpm 7858  mVRcmvar 31358  mRExcmrex 31363  mExcmex 31364  mRSubstcmrsub 31367  mSubstcmsub 31368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-pm 7860  df-msub 31388
This theorem is referenced by:  msubval  31422  msubrn  31426
  Copyright terms: Public domain W3C validator