Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubrn Structured version   Visualization version   Unicode version

Theorem msubrn 31426
Description: Although it is defined for partial mappings of variables, every partial substitution is a substitution on some complete mapping of the variables. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubff.v  |-  V  =  (mVR `  T )
msubff.r  |-  R  =  (mREx `  T )
msubff.s  |-  S  =  (mSubst `  T )
Assertion
Ref Expression
msubrn  |-  ran  S  =  ( S "
( R  ^m  V
) )

Proof of Theorem msubrn
Dummy variables  e 
f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 msubff.v . . . . . 6  |-  V  =  (mVR `  T )
2 msubff.r . . . . . 6  |-  R  =  (mREx `  T )
3 msubff.s . . . . . 6  |-  S  =  (mSubst `  T )
4 eqid 2622 . . . . . 6  |-  (mEx `  T )  =  (mEx
`  T )
5 eqid 2622 . . . . . 6  |-  (mRSubst `  T
)  =  (mRSubst `  T
)
61, 2, 3, 4, 5msubffval 31420 . . . . 5  |-  ( T  e.  _V  ->  S  =  ( f  e.  ( R  ^pm  V
)  |->  ( e  e.  (mEx `  T )  |-> 
<. ( 1st `  e
) ,  ( ( (mRSubst `  T ) `  f ) `  ( 2nd `  e ) )
>. ) ) )
76rneqd 5353 . . . 4  |-  ( T  e.  _V  ->  ran  S  =  ran  ( f  e.  ( R  ^pm  V )  |->  ( e  e.  (mEx `  T )  |-> 
<. ( 1st `  e
) ,  ( ( (mRSubst `  T ) `  f ) `  ( 2nd `  e ) )
>. ) ) )
81, 2, 5mrsubff 31409 . . . . . . . . . 10  |-  ( T  e.  _V  ->  (mRSubst `  T ) : ( R  ^pm  V ) --> ( R  ^m  R ) )
98adantr 481 . . . . . . . . 9  |-  ( ( T  e.  _V  /\  f  e.  ( R  ^pm  V ) )  -> 
(mRSubst `  T ) : ( R  ^pm  V
) --> ( R  ^m  R ) )
10 ffun 6048 . . . . . . . . 9  |-  ( (mRSubst `  T ) : ( R  ^pm  V ) --> ( R  ^m  R )  ->  Fun  (mRSubst `  T
) )
119, 10syl 17 . . . . . . . 8  |-  ( ( T  e.  _V  /\  f  e.  ( R  ^pm  V ) )  ->  Fun  (mRSubst `  T )
)
12 ffn 6045 . . . . . . . . . . 11  |-  ( (mRSubst `  T ) : ( R  ^pm  V ) --> ( R  ^m  R )  ->  (mRSubst `  T )  Fn  ( R  ^pm  V
) )
138, 12syl 17 . . . . . . . . . 10  |-  ( T  e.  _V  ->  (mRSubst `  T )  Fn  ( R  ^pm  V ) )
14 fnfvelrn 6356 . . . . . . . . . 10  |-  ( ( (mRSubst `  T )  Fn  ( R  ^pm  V
)  /\  f  e.  ( R  ^pm  V ) )  ->  ( (mRSubst `  T ) `  f
)  e.  ran  (mRSubst `  T ) )
1513, 14sylan 488 . . . . . . . . 9  |-  ( ( T  e.  _V  /\  f  e.  ( R  ^pm  V ) )  -> 
( (mRSubst `  T
) `  f )  e.  ran  (mRSubst `  T
) )
161, 2, 5mrsubrn 31410 . . . . . . . . 9  |-  ran  (mRSubst `  T )  =  ( (mRSubst `  T ) " ( R  ^m  V ) )
1715, 16syl6eleq 2711 . . . . . . . 8  |-  ( ( T  e.  _V  /\  f  e.  ( R  ^pm  V ) )  -> 
( (mRSubst `  T
) `  f )  e.  ( (mRSubst `  T
) " ( R  ^m  V ) ) )
18 fvelima 6248 . . . . . . . 8  |-  ( ( Fun  (mRSubst `  T
)  /\  ( (mRSubst `  T ) `  f
)  e.  ( (mRSubst `  T ) " ( R  ^m  V ) ) )  ->  E. g  e.  ( R  ^m  V
) ( (mRSubst `  T
) `  g )  =  ( (mRSubst `  T
) `  f )
)
1911, 17, 18syl2anc 693 . . . . . . 7  |-  ( ( T  e.  _V  /\  f  e.  ( R  ^pm  V ) )  ->  E. g  e.  ( R  ^m  V ) ( (mRSubst `  T ) `  g )  =  ( (mRSubst `  T ) `  f ) )
20 elmapi 7879 . . . . . . . . . . . . 13  |-  ( g  e.  ( R  ^m  V )  ->  g : V --> R )
2120adantl 482 . . . . . . . . . . . 12  |-  ( ( T  e.  _V  /\  g  e.  ( R  ^m  V ) )  -> 
g : V --> R )
22 ssid 3624 . . . . . . . . . . . 12  |-  V  C_  V
231, 2, 3, 4, 5msubfval 31421 . . . . . . . . . . . 12  |-  ( ( g : V --> R  /\  V  C_  V )  -> 
( S `  g
)  =  ( e  e.  (mEx `  T
)  |->  <. ( 1st `  e
) ,  ( ( (mRSubst `  T ) `  g ) `  ( 2nd `  e ) )
>. ) )
2421, 22, 23sylancl 694 . . . . . . . . . . 11  |-  ( ( T  e.  _V  /\  g  e.  ( R  ^m  V ) )  -> 
( S `  g
)  =  ( e  e.  (mEx `  T
)  |->  <. ( 1st `  e
) ,  ( ( (mRSubst `  T ) `  g ) `  ( 2nd `  e ) )
>. ) )
25 fvex 6201 . . . . . . . . . . . . . . . 16  |-  (mEx `  T )  e.  _V
2625mptex 6486 . . . . . . . . . . . . . . 15  |-  ( e  e.  (mEx `  T
)  |->  <. ( 1st `  e
) ,  ( ( (mRSubst `  T ) `  f ) `  ( 2nd `  e ) )
>. )  e.  _V
27 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( f  e.  ( R  ^pm  V )  |->  ( e  e.  (mEx `  T )  |-> 
<. ( 1st `  e
) ,  ( ( (mRSubst `  T ) `  f ) `  ( 2nd `  e ) )
>. ) )  =  ( f  e.  ( R 
^pm  V )  |->  ( e  e.  (mEx `  T )  |->  <. ( 1st `  e ) ,  ( ( (mRSubst `  T
) `  f ) `  ( 2nd `  e
) ) >. )
)
2826, 27fnmpti 6022 . . . . . . . . . . . . . 14  |-  ( f  e.  ( R  ^pm  V )  |->  ( e  e.  (mEx `  T )  |-> 
<. ( 1st `  e
) ,  ( ( (mRSubst `  T ) `  f ) `  ( 2nd `  e ) )
>. ) )  Fn  ( R  ^pm  V )
296fneq1d 5981 . . . . . . . . . . . . . 14  |-  ( T  e.  _V  ->  ( S  Fn  ( R  ^pm  V )  <->  ( f  e.  ( R  ^pm  V
)  |->  ( e  e.  (mEx `  T )  |-> 
<. ( 1st `  e
) ,  ( ( (mRSubst `  T ) `  f ) `  ( 2nd `  e ) )
>. ) )  Fn  ( R  ^pm  V ) ) )
3028, 29mpbiri 248 . . . . . . . . . . . . 13  |-  ( T  e.  _V  ->  S  Fn  ( R  ^pm  V
) )
3130adantr 481 . . . . . . . . . . . 12  |-  ( ( T  e.  _V  /\  g  e.  ( R  ^m  V ) )  ->  S  Fn  ( R  ^pm  V ) )
32 mapsspm 7891 . . . . . . . . . . . . 13  |-  ( R  ^m  V )  C_  ( R  ^pm  V )
3332a1i 11 . . . . . . . . . . . 12  |-  ( ( T  e.  _V  /\  g  e.  ( R  ^m  V ) )  -> 
( R  ^m  V
)  C_  ( R  ^pm  V ) )
34 simpr 477 . . . . . . . . . . . 12  |-  ( ( T  e.  _V  /\  g  e.  ( R  ^m  V ) )  -> 
g  e.  ( R  ^m  V ) )
35 fnfvima 6496 . . . . . . . . . . . 12  |-  ( ( S  Fn  ( R 
^pm  V )  /\  ( R  ^m  V ) 
C_  ( R  ^pm  V )  /\  g  e.  ( R  ^m  V
) )  ->  ( S `  g )  e.  ( S " ( R  ^m  V ) ) )
3631, 33, 34, 35syl3anc 1326 . . . . . . . . . . 11  |-  ( ( T  e.  _V  /\  g  e.  ( R  ^m  V ) )  -> 
( S `  g
)  e.  ( S
" ( R  ^m  V ) ) )
3724, 36eqeltrrd 2702 . . . . . . . . . 10  |-  ( ( T  e.  _V  /\  g  e.  ( R  ^m  V ) )  -> 
( e  e.  (mEx
`  T )  |->  <.
( 1st `  e
) ,  ( ( (mRSubst `  T ) `  g ) `  ( 2nd `  e ) )
>. )  e.  ( S " ( R  ^m  V ) ) )
3837adantlr 751 . . . . . . . . 9  |-  ( ( ( T  e.  _V  /\  f  e.  ( R 
^pm  V ) )  /\  g  e.  ( R  ^m  V ) )  ->  ( e  e.  (mEx `  T )  |-> 
<. ( 1st `  e
) ,  ( ( (mRSubst `  T ) `  g ) `  ( 2nd `  e ) )
>. )  e.  ( S " ( R  ^m  V ) ) )
39 fveq1 6190 . . . . . . . . . . . 12  |-  ( ( (mRSubst `  T ) `  g )  =  ( (mRSubst `  T ) `  f )  ->  (
( (mRSubst `  T
) `  g ) `  ( 2nd `  e
) )  =  ( ( (mRSubst `  T
) `  f ) `  ( 2nd `  e
) ) )
4039opeq2d 4409 . . . . . . . . . . 11  |-  ( ( (mRSubst `  T ) `  g )  =  ( (mRSubst `  T ) `  f )  ->  <. ( 1st `  e ) ,  ( ( (mRSubst `  T
) `  g ) `  ( 2nd `  e
) ) >.  =  <. ( 1st `  e ) ,  ( ( (mRSubst `  T ) `  f
) `  ( 2nd `  e ) ) >.
)
4140mpteq2dv 4745 . . . . . . . . . 10  |-  ( ( (mRSubst `  T ) `  g )  =  ( (mRSubst `  T ) `  f )  ->  (
e  e.  (mEx `  T )  |->  <. ( 1st `  e ) ,  ( ( (mRSubst `  T
) `  g ) `  ( 2nd `  e
) ) >. )  =  ( e  e.  (mEx `  T )  |-> 
<. ( 1st `  e
) ,  ( ( (mRSubst `  T ) `  f ) `  ( 2nd `  e ) )
>. ) )
4241eleq1d 2686 . . . . . . . . 9  |-  ( ( (mRSubst `  T ) `  g )  =  ( (mRSubst `  T ) `  f )  ->  (
( e  e.  (mEx
`  T )  |->  <.
( 1st `  e
) ,  ( ( (mRSubst `  T ) `  g ) `  ( 2nd `  e ) )
>. )  e.  ( S " ( R  ^m  V ) )  <->  ( e  e.  (mEx `  T )  |-> 
<. ( 1st `  e
) ,  ( ( (mRSubst `  T ) `  f ) `  ( 2nd `  e ) )
>. )  e.  ( S " ( R  ^m  V ) ) ) )
4338, 42syl5ibcom 235 . . . . . . . 8  |-  ( ( ( T  e.  _V  /\  f  e.  ( R 
^pm  V ) )  /\  g  e.  ( R  ^m  V ) )  ->  ( (
(mRSubst `  T ) `  g )  =  ( (mRSubst `  T ) `  f )  ->  (
e  e.  (mEx `  T )  |->  <. ( 1st `  e ) ,  ( ( (mRSubst `  T
) `  f ) `  ( 2nd `  e
) ) >. )  e.  ( S " ( R  ^m  V ) ) ) )
4443rexlimdva 3031 . . . . . . 7  |-  ( ( T  e.  _V  /\  f  e.  ( R  ^pm  V ) )  -> 
( E. g  e.  ( R  ^m  V
) ( (mRSubst `  T
) `  g )  =  ( (mRSubst `  T
) `  f )  ->  ( e  e.  (mEx
`  T )  |->  <.
( 1st `  e
) ,  ( ( (mRSubst `  T ) `  f ) `  ( 2nd `  e ) )
>. )  e.  ( S " ( R  ^m  V ) ) ) )
4519, 44mpd 15 . . . . . 6  |-  ( ( T  e.  _V  /\  f  e.  ( R  ^pm  V ) )  -> 
( e  e.  (mEx
`  T )  |->  <.
( 1st `  e
) ,  ( ( (mRSubst `  T ) `  f ) `  ( 2nd `  e ) )
>. )  e.  ( S " ( R  ^m  V ) ) )
4645, 27fmptd 6385 . . . . 5  |-  ( T  e.  _V  ->  (
f  e.  ( R 
^pm  V )  |->  ( e  e.  (mEx `  T )  |->  <. ( 1st `  e ) ,  ( ( (mRSubst `  T
) `  f ) `  ( 2nd `  e
) ) >. )
) : ( R 
^pm  V ) --> ( S " ( R  ^m  V ) ) )
47 frn 6053 . . . . 5  |-  ( ( f  e.  ( R 
^pm  V )  |->  ( e  e.  (mEx `  T )  |->  <. ( 1st `  e ) ,  ( ( (mRSubst `  T
) `  f ) `  ( 2nd `  e
) ) >. )
) : ( R 
^pm  V ) --> ( S " ( R  ^m  V ) )  ->  ran  ( f  e.  ( R  ^pm  V
)  |->  ( e  e.  (mEx `  T )  |-> 
<. ( 1st `  e
) ,  ( ( (mRSubst `  T ) `  f ) `  ( 2nd `  e ) )
>. ) )  C_  ( S " ( R  ^m  V ) ) )
4846, 47syl 17 . . . 4  |-  ( T  e.  _V  ->  ran  ( f  e.  ( R  ^pm  V )  |->  ( e  e.  (mEx
`  T )  |->  <.
( 1st `  e
) ,  ( ( (mRSubst `  T ) `  f ) `  ( 2nd `  e ) )
>. ) )  C_  ( S " ( R  ^m  V ) ) )
497, 48eqsstrd 3639 . . 3  |-  ( T  e.  _V  ->  ran  S 
C_  ( S "
( R  ^m  V
) ) )
50 fvprc 6185 . . . . . . 7  |-  ( -.  T  e.  _V  ->  (mSubst `  T )  =  (/) )
513, 50syl5eq 2668 . . . . . 6  |-  ( -.  T  e.  _V  ->  S  =  (/) )
5251rneqd 5353 . . . . 5  |-  ( -.  T  e.  _V  ->  ran 
S  =  ran  (/) )
53 rn0 5377 . . . . 5  |-  ran  (/)  =  (/)
5452, 53syl6eq 2672 . . . 4  |-  ( -.  T  e.  _V  ->  ran 
S  =  (/) )
55 0ss 3972 . . . 4  |-  (/)  C_  ( S " ( R  ^m  V ) )
5654, 55syl6eqss 3655 . . 3  |-  ( -.  T  e.  _V  ->  ran 
S  C_  ( S " ( R  ^m  V
) ) )
5749, 56pm2.61i 176 . 2  |-  ran  S  C_  ( S " ( R  ^m  V ) )
58 imassrn 5477 . 2  |-  ( S
" ( R  ^m  V ) )  C_  ran  S
5957, 58eqssi 3619 1  |-  ran  S  =  ( S "
( R  ^m  V
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    C_ wss 3574   (/)c0 3915   <.cop 4183    |-> cmpt 4729   ran crn 5115   "cima 5117   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857    ^pm cpm 7858  mVRcmvar 31358  mRExcmrex 31363  mExcmex 31364  mRSubstcmrsub 31367  mSubstcmsub 31368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-frmd 17386  df-mrex 31383  df-mrsub 31387  df-msub 31388
This theorem is referenced by:  msubff1o  31454
  Copyright terms: Public domain W3C validator