Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubval Structured version   Visualization version   Unicode version

Theorem msubval 31422
Description: A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubffval.v  |-  V  =  (mVR `  T )
msubffval.r  |-  R  =  (mREx `  T )
msubffval.s  |-  S  =  (mSubst `  T )
msubffval.e  |-  E  =  (mEx `  T )
msubffval.o  |-  O  =  (mRSubst `  T )
Assertion
Ref Expression
msubval  |-  ( ( F : A --> R  /\  A  C_  V  /\  X  e.  E )  ->  (
( S `  F
) `  X )  =  <. ( 1st `  X
) ,  ( ( O `  F ) `
 ( 2nd `  X
) ) >. )

Proof of Theorem msubval
Dummy variable  e is distinct from all other variables.
StepHypRef Expression
1 msubffval.v . . . 4  |-  V  =  (mVR `  T )
2 msubffval.r . . . 4  |-  R  =  (mREx `  T )
3 msubffval.s . . . 4  |-  S  =  (mSubst `  T )
4 msubffval.e . . . 4  |-  E  =  (mEx `  T )
5 msubffval.o . . . 4  |-  O  =  (mRSubst `  T )
61, 2, 3, 4, 5msubfval 31421 . . 3  |-  ( ( F : A --> R  /\  A  C_  V )  -> 
( S `  F
)  =  ( e  e.  E  |->  <. ( 1st `  e ) ,  ( ( O `  F ) `  ( 2nd `  e ) )
>. ) )
763adant3 1081 . 2  |-  ( ( F : A --> R  /\  A  C_  V  /\  X  e.  E )  ->  ( S `  F )  =  ( e  e.  E  |->  <. ( 1st `  e
) ,  ( ( O `  F ) `
 ( 2nd `  e
) ) >. )
)
8 simpr 477 . . . 4  |-  ( ( ( F : A --> R  /\  A  C_  V  /\  X  e.  E
)  /\  e  =  X )  ->  e  =  X )
98fveq2d 6195 . . 3  |-  ( ( ( F : A --> R  /\  A  C_  V  /\  X  e.  E
)  /\  e  =  X )  ->  ( 1st `  e )  =  ( 1st `  X
) )
108fveq2d 6195 . . . 4  |-  ( ( ( F : A --> R  /\  A  C_  V  /\  X  e.  E
)  /\  e  =  X )  ->  ( 2nd `  e )  =  ( 2nd `  X
) )
1110fveq2d 6195 . . 3  |-  ( ( ( F : A --> R  /\  A  C_  V  /\  X  e.  E
)  /\  e  =  X )  ->  (
( O `  F
) `  ( 2nd `  e ) )  =  ( ( O `  F ) `  ( 2nd `  X ) ) )
129, 11opeq12d 4410 . 2  |-  ( ( ( F : A --> R  /\  A  C_  V  /\  X  e.  E
)  /\  e  =  X )  ->  <. ( 1st `  e ) ,  ( ( O `  F ) `  ( 2nd `  e ) )
>.  =  <. ( 1st `  X ) ,  ( ( O `  F
) `  ( 2nd `  X ) ) >.
)
13 simp3 1063 . 2  |-  ( ( F : A --> R  /\  A  C_  V  /\  X  e.  E )  ->  X  e.  E )
14 opex 4932 . . 3  |-  <. ( 1st `  X ) ,  ( ( O `  F ) `  ( 2nd `  X ) )
>.  e.  _V
1514a1i 11 . 2  |-  ( ( F : A --> R  /\  A  C_  V  /\  X  e.  E )  ->  <. ( 1st `  X ) ,  ( ( O `  F ) `  ( 2nd `  X ) )
>.  e.  _V )
167, 12, 13, 15fvmptd 6288 1  |-  ( ( F : A --> R  /\  A  C_  V  /\  X  e.  E )  ->  (
( S `  F
) `  X )  =  <. ( 1st `  X
) ,  ( ( O `  F ) `
 ( 2nd `  X
) ) >. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   <.cop 4183    |-> cmpt 4729   -->wf 5884   ` cfv 5888   1stc1st 7166   2ndc2nd 7167  mVRcmvar 31358  mRExcmrex 31363  mExcmex 31364  mRSubstcmrsub 31367  mSubstcmsub 31368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-pm 7860  df-msub 31388
This theorem is referenced by:  msubrsub  31423  msubty  31424  msubff1  31453
  Copyright terms: Public domain W3C validator