| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mt4d | Structured version Visualization version Unicode version | ||
| Description: Modus tollens deduction. Deduction form of mt4 115. (Contributed by NM, 9-Jun-2006.) |
| Ref | Expression |
|---|---|
| mt4d.1 |
|
| mt4d.2 |
|
| Ref | Expression |
|---|---|
| mt4d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mt4d.1 |
. 2
| |
| 2 | mt4d.2 |
. . 3
| |
| 3 | 2 | con4d 114 |
. 2
|
| 4 | 1, 3 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mt4i 153 fin1a2s 9236 gchinf 9479 pwfseqlem4 9484 pcfac 15603 prmreclem3 15622 sylow1lem1 18013 irredrmul 18707 mdetunilem9 20426 ioorcl2 23340 itg2gt0 23527 mdegmullem 23838 atom1d 29212 notnotrALT 38735 fourierdlem79 40402 |
| Copyright terms: Public domain | W3C validator |