MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfseqlem4 Structured version   Visualization version   Unicode version

Theorem pwfseqlem4 9484
Description: Lemma for pwfseq 9486. Derive a final contradiction from the function  F in pwfseqlem3 9482. Applying fpwwe2 9465 to it, we get a certain maximal well-ordered subset 
Z, but the defining property  ( Z F ( W `  Z
) )  e.  Z contradicts our assumption on  F, so we are reduced to the case of 
Z finite. This too is a contradiction, though, because  Z and its preimage under  ( W `  Z
) are distinct sets of the same cardinality and in a subset relation, which is impossible for finite sets. (Contributed by Mario Carneiro, 31-May-2015.)
Hypotheses
Ref Expression
pwfseqlem4.g  |-  ( ph  ->  G : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )
pwfseqlem4.x  |-  ( ph  ->  X  C_  A )
pwfseqlem4.h  |-  ( ph  ->  H : om -1-1-onto-> X )
pwfseqlem4.ps  |-  ( ps  <->  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  /\  om  ~<_  x ) )
pwfseqlem4.k  |-  ( (
ph  /\  ps )  ->  K : U_ n  e.  om  ( x  ^m  n ) -1-1-> x )
pwfseqlem4.d  |-  D  =  ( G `  {
w  e.  x  |  ( ( `' K `  w )  e.  ran  G  /\  -.  w  e.  ( `' G `  ( `' K `  w ) ) ) } )
pwfseqlem4.f  |-  F  =  ( x  e.  _V ,  r  e.  _V  |->  if ( x  e.  Fin ,  ( H `  ( card `  x ) ) ,  ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } ) ) )
pwfseqlem4.w  |-  W  =  { <. a ,  s
>.  |  ( (
a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. b  e.  a 
[. ( `' s
" { b } )  /  v ]. ( v F ( s  i^i  ( v  X.  v ) ) )  =  b ) ) }
pwfseqlem4.z  |-  Z  = 
U. dom  W
Assertion
Ref Expression
pwfseqlem4  |-  -.  ph
Distinct variable groups:    n, r, w, x, z    D, n, z    a, b, s, v, F    w, G    w, K    r, a, x, z, H, b, s, v    n, a, ph, b, s, v, r, x, z    ps, n, z    A, a, n, r, s, x, z    W, a, b, s, v    Z, a, b, s, v
Allowed substitution hints:    ph( w)    ps( x, w, v, s, r, a, b)    A( w, v, b)    D( x, w, v, s, r, a, b)    F( x, z, w, n, r)    G( x, z, v, n, s, r, a, b)    H( w, n)    K( x, z, v, n, s, r, a, b)    W( x, z, w, n, r)    X( x, z, w, v, n, s, r, a, b)    Z( x, z, w, n, r)

Proof of Theorem pwfseqlem4
StepHypRef Expression
1 eqid 2622 . . . . . . . . . . 11  |-  Z  =  Z
2 eqid 2622 . . . . . . . . . . 11  |-  ( W `
 Z )  =  ( W `  Z
)
31, 2pm3.2i 471 . . . . . . . . . 10  |-  ( Z  =  Z  /\  ( W `  Z )  =  ( W `  Z ) )
4 pwfseqlem4.w . . . . . . . . . . 11  |-  W  =  { <. a ,  s
>.  |  ( (
a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. b  e.  a 
[. ( `' s
" { b } )  /  v ]. ( v F ( s  i^i  ( v  X.  v ) ) )  =  b ) ) }
5 pwfseqlem4.g . . . . . . . . . . . . 13  |-  ( ph  ->  G : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )
6 omex 8540 . . . . . . . . . . . . . 14  |-  om  e.  _V
7 ovex 6678 . . . . . . . . . . . . . 14  |-  ( A  ^m  n )  e. 
_V
86, 7iunex 7147 . . . . . . . . . . . . 13  |-  U_ n  e.  om  ( A  ^m  n )  e.  _V
9 f1dmex 7136 . . . . . . . . . . . . 13  |-  ( ( G : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n )  /\  U_ n  e.  om  ( A  ^m  n )  e. 
_V )  ->  ~P A  e.  _V )
105, 8, 9sylancl 694 . . . . . . . . . . . 12  |-  ( ph  ->  ~P A  e.  _V )
11 pwexb 6975 . . . . . . . . . . . 12  |-  ( A  e.  _V  <->  ~P A  e.  _V )
1210, 11sylibr 224 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  _V )
13 pwfseqlem4.x . . . . . . . . . . . 12  |-  ( ph  ->  X  C_  A )
14 pwfseqlem4.h . . . . . . . . . . . 12  |-  ( ph  ->  H : om -1-1-onto-> X )
15 pwfseqlem4.ps . . . . . . . . . . . 12  |-  ( ps  <->  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  /\  om  ~<_  x ) )
16 pwfseqlem4.k . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  K : U_ n  e.  om  ( x  ^m  n ) -1-1-> x )
17 pwfseqlem4.d . . . . . . . . . . . 12  |-  D  =  ( G `  {
w  e.  x  |  ( ( `' K `  w )  e.  ran  G  /\  -.  w  e.  ( `' G `  ( `' K `  w ) ) ) } )
18 pwfseqlem4.f . . . . . . . . . . . 12  |-  F  =  ( x  e.  _V ,  r  e.  _V  |->  if ( x  e.  Fin ,  ( H `  ( card `  x ) ) ,  ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } ) ) )
195, 13, 14, 15, 16, 17, 18pwfseqlem4a 9483 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  C_  A  /\  s  C_  ( a  X.  a
)  /\  s  We  a ) )  -> 
( a F s )  e.  A )
20 pwfseqlem4.z . . . . . . . . . . 11  |-  Z  = 
U. dom  W
214, 12, 19, 20fpwwe2 9465 . . . . . . . . . 10  |-  ( ph  ->  ( ( Z W ( W `  Z
)  /\  ( Z F ( W `  Z ) )  e.  Z )  <->  ( Z  =  Z  /\  ( W `  Z )  =  ( W `  Z ) ) ) )
223, 21mpbiri 248 . . . . . . . . 9  |-  ( ph  ->  ( Z W ( W `  Z )  /\  ( Z F ( W `  Z
) )  e.  Z
) )
2322simprd 479 . . . . . . . 8  |-  ( ph  ->  ( Z F ( W `  Z ) )  e.  Z )
2422simpld 475 . . . . . . . . . . . . 13  |-  ( ph  ->  Z W ( W `
 Z ) )
254, 12fpwwe2lem2 9454 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Z W ( W `  Z )  <-> 
( ( Z  C_  A  /\  ( W `  Z )  C_  ( Z  X.  Z ) )  /\  ( ( W `
 Z )  We  Z  /\  A. b  e.  Z  [. ( `' ( W `  Z
) " { b } )  /  v ]. ( v F ( ( W `  Z
)  i^i  ( v  X.  v ) ) )  =  b ) ) ) )
2624, 25mpbid 222 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( Z  C_  A  /\  ( W `  Z )  C_  ( Z  X.  Z ) )  /\  ( ( W `
 Z )  We  Z  /\  A. b  e.  Z  [. ( `' ( W `  Z
) " { b } )  /  v ]. ( v F ( ( W `  Z
)  i^i  ( v  X.  v ) ) )  =  b ) ) )
2726simpld 475 . . . . . . . . . . 11  |-  ( ph  ->  ( Z  C_  A  /\  ( W `  Z
)  C_  ( Z  X.  Z ) ) )
2827simpld 475 . . . . . . . . . 10  |-  ( ph  ->  Z  C_  A )
2912, 28ssexd 4805 . . . . . . . . 9  |-  ( ph  ->  Z  e.  _V )
30 sseq1 3626 . . . . . . . . . . . . . 14  |-  ( a  =  Z  ->  (
a  C_  A  <->  Z  C_  A
) )
31 id 22 . . . . . . . . . . . . . . . 16  |-  ( a  =  Z  ->  a  =  Z )
3231sqxpeqd 5141 . . . . . . . . . . . . . . 15  |-  ( a  =  Z  ->  (
a  X.  a )  =  ( Z  X.  Z ) )
3332sseq2d 3633 . . . . . . . . . . . . . 14  |-  ( a  =  Z  ->  (
( W `  Z
)  C_  ( a  X.  a )  <->  ( W `  Z )  C_  ( Z  X.  Z ) ) )
34 weeq2 5103 . . . . . . . . . . . . . 14  |-  ( a  =  Z  ->  (
( W `  Z
)  We  a  <->  ( W `  Z )  We  Z
) )
3530, 33, 343anbi123d 1399 . . . . . . . . . . . . 13  |-  ( a  =  Z  ->  (
( a  C_  A  /\  ( W `  Z
)  C_  ( a  X.  a )  /\  ( W `  Z )  We  a )  <->  ( Z  C_  A  /\  ( W `
 Z )  C_  ( Z  X.  Z
)  /\  ( W `  Z )  We  Z
) ) )
3635anbi2d 740 . . . . . . . . . . . 12  |-  ( a  =  Z  ->  (
( ph  /\  (
a  C_  A  /\  ( W `  Z ) 
C_  ( a  X.  a )  /\  ( W `  Z )  We  a ) )  <->  ( ph  /\  ( Z  C_  A  /\  ( W `  Z
)  C_  ( Z  X.  Z )  /\  ( W `  Z )  We  Z ) ) ) )
37 id 22 . . . . . . . . . . . . . . . 16  |-  ( ( Z  C_  A  /\  ( W `  Z ) 
C_  ( Z  X.  Z )  /\  ( W `  Z )  We  Z )  ->  ( Z  C_  A  /\  ( W `  Z )  C_  ( Z  X.  Z
)  /\  ( W `  Z )  We  Z
) )
38373expa 1265 . . . . . . . . . . . . . . 15  |-  ( ( ( Z  C_  A  /\  ( W `  Z
)  C_  ( Z  X.  Z ) )  /\  ( W `  Z )  We  Z )  -> 
( Z  C_  A  /\  ( W `  Z
)  C_  ( Z  X.  Z )  /\  ( W `  Z )  We  Z ) )
3938adantrr 753 . . . . . . . . . . . . . 14  |-  ( ( ( Z  C_  A  /\  ( W `  Z
)  C_  ( Z  X.  Z ) )  /\  ( ( W `  Z )  We  Z  /\  A. b  e.  Z  [. ( `' ( W `
 Z ) " { b } )  /  v ]. (
v F ( ( W `  Z )  i^i  ( v  X.  v ) ) )  =  b ) )  ->  ( Z  C_  A  /\  ( W `  Z )  C_  ( Z  X.  Z )  /\  ( W `  Z )  We  Z ) )
4026, 39syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Z  C_  A  /\  ( W `  Z
)  C_  ( Z  X.  Z )  /\  ( W `  Z )  We  Z ) )
4140pm4.71i 664 . . . . . . . . . . . 12  |-  ( ph  <->  (
ph  /\  ( Z  C_  A  /\  ( W `
 Z )  C_  ( Z  X.  Z
)  /\  ( W `  Z )  We  Z
) ) )
4236, 41syl6bbr 278 . . . . . . . . . . 11  |-  ( a  =  Z  ->  (
( ph  /\  (
a  C_  A  /\  ( W `  Z ) 
C_  ( a  X.  a )  /\  ( W `  Z )  We  a ) )  <->  ph ) )
43 oveq1 6657 . . . . . . . . . . . . 13  |-  ( a  =  Z  ->  (
a F ( W `
 Z ) )  =  ( Z F ( W `  Z
) ) )
4443, 31eleq12d 2695 . . . . . . . . . . . 12  |-  ( a  =  Z  ->  (
( a F ( W `  Z ) )  e.  a  <->  ( Z F ( W `  Z ) )  e.  Z ) )
45 breq1 4656 . . . . . . . . . . . 12  |-  ( a  =  Z  ->  (
a  ~<  om  <->  Z  ~<  om )
)
4644, 45imbi12d 334 . . . . . . . . . . 11  |-  ( a  =  Z  ->  (
( ( a F ( W `  Z
) )  e.  a  ->  a  ~<  om )  <->  ( ( Z F ( W `  Z ) )  e.  Z  ->  Z  ~<  om ) ) )
4742, 46imbi12d 334 . . . . . . . . . 10  |-  ( a  =  Z  ->  (
( ( ph  /\  ( a  C_  A  /\  ( W `  Z
)  C_  ( a  X.  a )  /\  ( W `  Z )  We  a ) )  -> 
( ( a F ( W `  Z
) )  e.  a  ->  a  ~<  om )
)  <->  ( ph  ->  ( ( Z F ( W `  Z ) )  e.  Z  ->  Z  ~<  om ) ) ) )
48 fvex 6201 . . . . . . . . . . 11  |-  ( W `
 Z )  e. 
_V
49 sseq1 3626 . . . . . . . . . . . . . 14  |-  ( s  =  ( W `  Z )  ->  (
s  C_  ( a  X.  a )  <->  ( W `  Z )  C_  (
a  X.  a ) ) )
50 weeq1 5102 . . . . . . . . . . . . . 14  |-  ( s  =  ( W `  Z )  ->  (
s  We  a  <->  ( W `  Z )  We  a
) )
5149, 503anbi23d 1402 . . . . . . . . . . . . 13  |-  ( s  =  ( W `  Z )  ->  (
( a  C_  A  /\  s  C_  ( a  X.  a )  /\  s  We  a )  <->  ( a  C_  A  /\  ( W `  Z ) 
C_  ( a  X.  a )  /\  ( W `  Z )  We  a ) ) )
5251anbi2d 740 . . . . . . . . . . . 12  |-  ( s  =  ( W `  Z )  ->  (
( ph  /\  (
a  C_  A  /\  s  C_  ( a  X.  a )  /\  s  We  a ) )  <->  ( ph  /\  ( a  C_  A  /\  ( W `  Z
)  C_  ( a  X.  a )  /\  ( W `  Z )  We  a ) ) ) )
53 oveq2 6658 . . . . . . . . . . . . . 14  |-  ( s  =  ( W `  Z )  ->  (
a F s )  =  ( a F ( W `  Z
) ) )
5453eleq1d 2686 . . . . . . . . . . . . 13  |-  ( s  =  ( W `  Z )  ->  (
( a F s )  e.  a  <->  ( a F ( W `  Z ) )  e.  a ) )
5554imbi1d 331 . . . . . . . . . . . 12  |-  ( s  =  ( W `  Z )  ->  (
( ( a F s )  e.  a  ->  a  ~<  om )  <->  ( ( a F ( W `  Z ) )  e.  a  -> 
a  ~<  om ) ) )
5652, 55imbi12d 334 . . . . . . . . . . 11  |-  ( s  =  ( W `  Z )  ->  (
( ( ph  /\  ( a  C_  A  /\  s  C_  ( a  X.  a )  /\  s  We  a )
)  ->  ( (
a F s )  e.  a  ->  a  ~<  om ) )  <->  ( ( ph  /\  ( a  C_  A  /\  ( W `  Z )  C_  (
a  X.  a )  /\  ( W `  Z )  We  a
) )  ->  (
( a F ( W `  Z ) )  e.  a  -> 
a  ~<  om ) ) ) )
57 omelon 8543 . . . . . . . . . . . . . . 15  |-  om  e.  On
58 onenon 8775 . . . . . . . . . . . . . . 15  |-  ( om  e.  On  ->  om  e.  dom  card )
5957, 58ax-mp 5 . . . . . . . . . . . . . 14  |-  om  e.  dom  card
60 simpr3 1069 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( a  C_  A  /\  s  C_  ( a  X.  a
)  /\  s  We  a ) )  -> 
s  We  a )
61 19.8a 2052 . . . . . . . . . . . . . . . 16  |-  ( s  We  a  ->  E. s 
s  We  a )
6260, 61syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( a  C_  A  /\  s  C_  ( a  X.  a
)  /\  s  We  a ) )  ->  E. s  s  We  a )
63 ween 8858 . . . . . . . . . . . . . . 15  |-  ( a  e.  dom  card  <->  E. s 
s  We  a )
6462, 63sylibr 224 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( a  C_  A  /\  s  C_  ( a  X.  a
)  /\  s  We  a ) )  -> 
a  e.  dom  card )
65 domtri2 8815 . . . . . . . . . . . . . 14  |-  ( ( om  e.  dom  card  /\  a  e.  dom  card )  ->  ( om  ~<_  a  <->  -.  a  ~<  om ) )
6659, 64, 65sylancr 695 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  C_  A  /\  s  C_  ( a  X.  a
)  /\  s  We  a ) )  -> 
( om  ~<_  a  <->  -.  a  ~<  om ) )
67 nfv 1843 . . . . . . . . . . . . . . . . 17  |-  F/ r ( ph  /\  (
( a  C_  A  /\  s  C_  ( a  X.  a )  /\  s  We  a )  /\  om  ~<_  a ) )
68 nfcv 2764 . . . . . . . . . . . . . . . . . . 19  |-  F/_ r
a
69 nfmpt22 6723 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ r
( x  e.  _V ,  r  e.  _V  |->  if ( x  e.  Fin ,  ( H `  ( card `  x ) ) ,  ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } ) ) )
7018, 69nfcxfr 2762 . . . . . . . . . . . . . . . . . . 19  |-  F/_ r F
71 nfcv 2764 . . . . . . . . . . . . . . . . . . 19  |-  F/_ r
s
7268, 70, 71nfov 6676 . . . . . . . . . . . . . . . . . 18  |-  F/_ r
( a F s )
7372nfel1 2779 . . . . . . . . . . . . . . . . 17  |-  F/ r ( a F s )  e.  ( A 
\  a )
7467, 73nfim 1825 . . . . . . . . . . . . . . . 16  |-  F/ r ( ( ph  /\  ( ( a  C_  A  /\  s  C_  (
a  X.  a )  /\  s  We  a
)  /\  om  ~<_  a ) )  ->  ( a F s )  e.  ( A  \  a
) )
75 sseq1 3626 . . . . . . . . . . . . . . . . . . . 20  |-  ( r  =  s  ->  (
r  C_  ( a  X.  a )  <->  s  C_  ( a  X.  a
) ) )
76 weeq1 5102 . . . . . . . . . . . . . . . . . . . 20  |-  ( r  =  s  ->  (
r  We  a  <->  s  We  a ) )
7775, 763anbi23d 1402 . . . . . . . . . . . . . . . . . . 19  |-  ( r  =  s  ->  (
( a  C_  A  /\  r  C_  ( a  X.  a )  /\  r  We  a )  <->  ( a  C_  A  /\  s  C_  ( a  X.  a )  /\  s  We  a ) ) )
7877anbi1d 741 . . . . . . . . . . . . . . . . . 18  |-  ( r  =  s  ->  (
( ( a  C_  A  /\  r  C_  (
a  X.  a )  /\  r  We  a
)  /\  om  ~<_  a )  <-> 
( ( a  C_  A  /\  s  C_  (
a  X.  a )  /\  s  We  a
)  /\  om  ~<_  a ) ) )
7978anbi2d 740 . . . . . . . . . . . . . . . . 17  |-  ( r  =  s  ->  (
( ph  /\  (
( a  C_  A  /\  r  C_  ( a  X.  a )  /\  r  We  a )  /\  om  ~<_  a ) )  <-> 
( ph  /\  (
( a  C_  A  /\  s  C_  ( a  X.  a )  /\  s  We  a )  /\  om  ~<_  a ) ) ) )
80 oveq2 6658 . . . . . . . . . . . . . . . . . 18  |-  ( r  =  s  ->  (
a F r )  =  ( a F s ) )
8180eleq1d 2686 . . . . . . . . . . . . . . . . 17  |-  ( r  =  s  ->  (
( a F r )  e.  ( A 
\  a )  <->  ( a F s )  e.  ( A  \  a
) ) )
8279, 81imbi12d 334 . . . . . . . . . . . . . . . 16  |-  ( r  =  s  ->  (
( ( ph  /\  ( ( a  C_  A  /\  r  C_  (
a  X.  a )  /\  r  We  a
)  /\  om  ~<_  a ) )  ->  ( a F r )  e.  ( A  \  a
) )  <->  ( ( ph  /\  ( ( a 
C_  A  /\  s  C_  ( a  X.  a
)  /\  s  We  a )  /\  om  ~<_  a ) )  -> 
( a F s )  e.  ( A 
\  a ) ) ) )
83 nfv 1843 . . . . . . . . . . . . . . . . . 18  |-  F/ x
( ph  /\  (
( a  C_  A  /\  r  C_  ( a  X.  a )  /\  r  We  a )  /\  om  ~<_  a ) )
84 nfcv 2764 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ x
a
85 nfmpt21 6722 . . . . . . . . . . . . . . . . . . . . 21  |-  F/_ x
( x  e.  _V ,  r  e.  _V  |->  if ( x  e.  Fin ,  ( H `  ( card `  x ) ) ,  ( D `  |^| { z  e.  om  |  -.  ( D `  z )  e.  x } ) ) )
8618, 85nfcxfr 2762 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ x F
87 nfcv 2764 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ x
r
8884, 86, 87nfov 6676 . . . . . . . . . . . . . . . . . . 19  |-  F/_ x
( a F r )
8988nfel1 2779 . . . . . . . . . . . . . . . . . 18  |-  F/ x
( a F r )  e.  ( A 
\  a )
9083, 89nfim 1825 . . . . . . . . . . . . . . . . 17  |-  F/ x
( ( ph  /\  ( ( a  C_  A  /\  r  C_  (
a  X.  a )  /\  r  We  a
)  /\  om  ~<_  a ) )  ->  ( a F r )  e.  ( A  \  a
) )
91 sseq1 3626 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  a  ->  (
x  C_  A  <->  a  C_  A ) )
92 xpeq12 5134 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( x  =  a  /\  x  =  a )  ->  ( x  X.  x
)  =  ( a  X.  a ) )
9392anidms 677 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  a  ->  (
x  X.  x )  =  ( a  X.  a ) )
9493sseq2d 3633 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  a  ->  (
r  C_  ( x  X.  x )  <->  r  C_  ( a  X.  a
) ) )
95 weeq2 5103 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  a  ->  (
r  We  x  <->  r  We  a ) )
9691, 94, 953anbi123d 1399 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  a  ->  (
( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  <->  ( a  C_  A  /\  r  C_  ( a  X.  a )  /\  r  We  a ) ) )
97 breq2 4657 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  a  ->  ( om 
~<_  x  <->  om  ~<_  a ) )
9896, 97anbi12d 747 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  a  ->  (
( ( x  C_  A  /\  r  C_  (
x  X.  x )  /\  r  We  x
)  /\  om  ~<_  x )  <-> 
( ( a  C_  A  /\  r  C_  (
a  X.  a )  /\  r  We  a
)  /\  om  ~<_  a ) ) )
9915, 98syl5bb 272 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  a  ->  ( ps 
<->  ( ( a  C_  A  /\  r  C_  (
a  X.  a )  /\  r  We  a
)  /\  om  ~<_  a ) ) )
10099anbi2d 740 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  a  ->  (
( ph  /\  ps )  <->  (
ph  /\  ( (
a  C_  A  /\  r  C_  ( a  X.  a )  /\  r  We  a )  /\  om  ~<_  a ) ) ) )
101 oveq1 6657 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  a  ->  (
x F r )  =  ( a F r ) )
102 difeq2 3722 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  a  ->  ( A  \  x )  =  ( A  \  a
) )
103101, 102eleq12d 2695 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  a  ->  (
( x F r )  e.  ( A 
\  x )  <->  ( a F r )  e.  ( A  \  a
) ) )
104100, 103imbi12d 334 . . . . . . . . . . . . . . . . 17  |-  ( x  =  a  ->  (
( ( ph  /\  ps )  ->  ( x F r )  e.  ( A  \  x
) )  <->  ( ( ph  /\  ( ( a 
C_  A  /\  r  C_  ( a  X.  a
)  /\  r  We  a )  /\  om  ~<_  a ) )  -> 
( a F r )  e.  ( A 
\  a ) ) ) )
1055, 13, 14, 15, 16, 17, 18pwfseqlem3 9482 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ps )  ->  ( x F r )  e.  ( A 
\  x ) )
10690, 104, 105chvar 2262 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
a  C_  A  /\  r  C_  ( a  X.  a )  /\  r  We  a )  /\  om  ~<_  a ) )  -> 
( a F r )  e.  ( A 
\  a ) )
10774, 82, 106chvar 2262 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
a  C_  A  /\  s  C_  ( a  X.  a )  /\  s  We  a )  /\  om  ~<_  a ) )  -> 
( a F s )  e.  ( A 
\  a ) )
108107eldifbd 3587 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
a  C_  A  /\  s  C_  ( a  X.  a )  /\  s  We  a )  /\  om  ~<_  a ) )  ->  -.  ( a F s )  e.  a )
109108expr 643 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  C_  A  /\  s  C_  ( a  X.  a
)  /\  s  We  a ) )  -> 
( om  ~<_  a  ->  -.  ( a F s )  e.  a ) )
11066, 109sylbird 250 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  C_  A  /\  s  C_  ( a  X.  a
)  /\  s  We  a ) )  -> 
( -.  a  ~<  om  ->  -.  ( a F s )  e.  a ) )
111110con4d 114 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  C_  A  /\  s  C_  ( a  X.  a
)  /\  s  We  a ) )  -> 
( ( a F s )  e.  a  ->  a  ~<  om )
)
11248, 56, 111vtocl 3259 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  C_  A  /\  ( W `
 Z )  C_  ( a  X.  a
)  /\  ( W `  Z )  We  a
) )  ->  (
( a F ( W `  Z ) )  e.  a  -> 
a  ~<  om ) )
11347, 112vtoclg 3266 . . . . . . . . 9  |-  ( Z  e.  _V  ->  ( ph  ->  ( ( Z F ( W `  Z ) )  e.  Z  ->  Z  ~<  om ) ) )
11429, 113mpcom 38 . . . . . . . 8  |-  ( ph  ->  ( ( Z F ( W `  Z
) )  e.  Z  ->  Z  ~<  om )
)
11523, 114mpd 15 . . . . . . 7  |-  ( ph  ->  Z  ~<  om )
116 isfinite 8549 . . . . . . 7  |-  ( Z  e.  Fin  <->  Z  ~<  om )
117115, 116sylibr 224 . . . . . 6  |-  ( ph  ->  Z  e.  Fin )
1185, 13, 14, 15, 16, 17, 18pwfseqlem2 9481 . . . . . 6  |-  ( ( Z  e.  Fin  /\  ( W `  Z )  e.  _V )  -> 
( Z F ( W `  Z ) )  =  ( H `
 ( card `  Z
) ) )
119117, 48, 118sylancl 694 . . . . 5  |-  ( ph  ->  ( Z F ( W `  Z ) )  =  ( H `
 ( card `  Z
) ) )
120119, 23eqeltrrd 2702 . . . 4  |-  ( ph  ->  ( H `  ( card `  Z ) )  e.  Z )
1214, 12, 24fpwwe2lem3 9455 . . . . . . . . . 10  |-  ( (
ph  /\  ( H `  ( card `  Z
) )  e.  Z
)  ->  ( ( `' ( W `  Z ) " {
( H `  ( card `  Z ) ) } ) F ( ( W `  Z
)  i^i  ( ( `' ( W `  Z ) " {
( H `  ( card `  Z ) ) } )  X.  ( `' ( W `  Z ) " {
( H `  ( card `  Z ) ) } ) ) ) )  =  ( H `
 ( card `  Z
) ) )
122120, 121mpdan 702 . . . . . . . . 9  |-  ( ph  ->  ( ( `' ( W `  Z )
" { ( H `
 ( card `  Z
) ) } ) F ( ( W `
 Z )  i^i  ( ( `' ( W `  Z )
" { ( H `
 ( card `  Z
) ) } )  X.  ( `' ( W `  Z )
" { ( H `
 ( card `  Z
) ) } ) ) ) )  =  ( H `  ( card `  Z ) ) )
123 cnvimass 5485 . . . . . . . . . . . 12  |-  ( `' ( W `  Z
) " { ( H `  ( card `  Z ) ) } )  C_  dom  ( W `
 Z )
12427simprd 479 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( W `  Z
)  C_  ( Z  X.  Z ) )
125 dmss 5323 . . . . . . . . . . . . . 14  |-  ( ( W `  Z ) 
C_  ( Z  X.  Z )  ->  dom  ( W `  Z ) 
C_  dom  ( Z  X.  Z ) )
126124, 125syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  ( W `  Z )  C_  dom  ( Z  X.  Z
) )
127 dmxpss 5565 . . . . . . . . . . . . 13  |-  dom  ( Z  X.  Z )  C_  Z
128126, 127syl6ss 3615 . . . . . . . . . . . 12  |-  ( ph  ->  dom  ( W `  Z )  C_  Z
)
129123, 128syl5ss 3614 . . . . . . . . . . 11  |-  ( ph  ->  ( `' ( W `
 Z ) " { ( H `  ( card `  Z )
) } )  C_  Z )
130117, 129ssfid 8183 . . . . . . . . . 10  |-  ( ph  ->  ( `' ( W `
 Z ) " { ( H `  ( card `  Z )
) } )  e. 
Fin )
13148inex1 4799 . . . . . . . . . 10  |-  ( ( W `  Z )  i^i  ( ( `' ( W `  Z
) " { ( H `  ( card `  Z ) ) } )  X.  ( `' ( W `  Z
) " { ( H `  ( card `  Z ) ) } ) ) )  e. 
_V
1325, 13, 14, 15, 16, 17, 18pwfseqlem2 9481 . . . . . . . . . 10  |-  ( ( ( `' ( W `
 Z ) " { ( H `  ( card `  Z )
) } )  e. 
Fin  /\  ( ( W `  Z )  i^i  ( ( `' ( W `  Z )
" { ( H `
 ( card `  Z
) ) } )  X.  ( `' ( W `  Z )
" { ( H `
 ( card `  Z
) ) } ) ) )  e.  _V )  ->  ( ( `' ( W `  Z
) " { ( H `  ( card `  Z ) ) } ) F ( ( W `  Z )  i^i  ( ( `' ( W `  Z
) " { ( H `  ( card `  Z ) ) } )  X.  ( `' ( W `  Z
) " { ( H `  ( card `  Z ) ) } ) ) ) )  =  ( H `  ( card `  ( `' ( W `  Z )
" { ( H `
 ( card `  Z
) ) } ) ) ) )
133130, 131, 132sylancl 694 . . . . . . . . 9  |-  ( ph  ->  ( ( `' ( W `  Z )
" { ( H `
 ( card `  Z
) ) } ) F ( ( W `
 Z )  i^i  ( ( `' ( W `  Z )
" { ( H `
 ( card `  Z
) ) } )  X.  ( `' ( W `  Z )
" { ( H `
 ( card `  Z
) ) } ) ) ) )  =  ( H `  ( card `  ( `' ( W `  Z )
" { ( H `
 ( card `  Z
) ) } ) ) ) )
134122, 133eqtr3d 2658 . . . . . . . 8  |-  ( ph  ->  ( H `  ( card `  Z ) )  =  ( H `  ( card `  ( `' ( W `  Z )
" { ( H `
 ( card `  Z
) ) } ) ) ) )
135 f1of1 6136 . . . . . . . . . 10  |-  ( H : om -1-1-onto-> X  ->  H : om
-1-1-> X )
13614, 135syl 17 . . . . . . . . 9  |-  ( ph  ->  H : om -1-1-> X
)
137 ficardom 8787 . . . . . . . . . 10  |-  ( Z  e.  Fin  ->  ( card `  Z )  e. 
om )
138117, 137syl 17 . . . . . . . . 9  |-  ( ph  ->  ( card `  Z
)  e.  om )
139 ficardom 8787 . . . . . . . . . 10  |-  ( ( `' ( W `  Z ) " {
( H `  ( card `  Z ) ) } )  e.  Fin  ->  ( card `  ( `' ( W `  Z ) " {
( H `  ( card `  Z ) ) } ) )  e. 
om )
140130, 139syl 17 . . . . . . . . 9  |-  ( ph  ->  ( card `  ( `' ( W `  Z ) " {
( H `  ( card `  Z ) ) } ) )  e. 
om )
141 f1fveq 6519 . . . . . . . . 9  |-  ( ( H : om -1-1-> X  /\  ( ( card `  Z
)  e.  om  /\  ( card `  ( `' ( W `  Z )
" { ( H `
 ( card `  Z
) ) } ) )  e.  om )
)  ->  ( ( H `  ( card `  Z ) )  =  ( H `  ( card `  ( `' ( W `  Z )
" { ( H `
 ( card `  Z
) ) } ) ) )  <->  ( card `  Z )  =  (
card `  ( `' ( W `  Z )
" { ( H `
 ( card `  Z
) ) } ) ) ) )
142136, 138, 140, 141syl12anc 1324 . . . . . . . 8  |-  ( ph  ->  ( ( H `  ( card `  Z )
)  =  ( H `
 ( card `  ( `' ( W `  Z ) " {
( H `  ( card `  Z ) ) } ) ) )  <-> 
( card `  Z )  =  ( card `  ( `' ( W `  Z ) " {
( H `  ( card `  Z ) ) } ) ) ) )
143134, 142mpbid 222 . . . . . . 7  |-  ( ph  ->  ( card `  Z
)  =  ( card `  ( `' ( W `
 Z ) " { ( H `  ( card `  Z )
) } ) ) )
144143eqcomd 2628 . . . . . 6  |-  ( ph  ->  ( card `  ( `' ( W `  Z ) " {
( H `  ( card `  Z ) ) } ) )  =  ( card `  Z
) )
145 finnum 8774 . . . . . . . 8  |-  ( ( `' ( W `  Z ) " {
( H `  ( card `  Z ) ) } )  e.  Fin  ->  ( `' ( W `
 Z ) " { ( H `  ( card `  Z )
) } )  e. 
dom  card )
146130, 145syl 17 . . . . . . 7  |-  ( ph  ->  ( `' ( W `
 Z ) " { ( H `  ( card `  Z )
) } )  e. 
dom  card )
147 finnum 8774 . . . . . . . 8  |-  ( Z  e.  Fin  ->  Z  e.  dom  card )
148117, 147syl 17 . . . . . . 7  |-  ( ph  ->  Z  e.  dom  card )
149 carden2 8813 . . . . . . 7  |-  ( ( ( `' ( W `
 Z ) " { ( H `  ( card `  Z )
) } )  e. 
dom  card  /\  Z  e.  dom  card )  ->  (
( card `  ( `' ( W `  Z )
" { ( H `
 ( card `  Z
) ) } ) )  =  ( card `  Z )  <->  ( `' ( W `  Z )
" { ( H `
 ( card `  Z
) ) } ) 
~~  Z ) )
150146, 148, 149syl2anc 693 . . . . . 6  |-  ( ph  ->  ( ( card `  ( `' ( W `  Z ) " {
( H `  ( card `  Z ) ) } ) )  =  ( card `  Z
)  <->  ( `' ( W `  Z )
" { ( H `
 ( card `  Z
) ) } ) 
~~  Z ) )
151144, 150mpbid 222 . . . . 5  |-  ( ph  ->  ( `' ( W `
 Z ) " { ( H `  ( card `  Z )
) } )  ~~  Z )
152 dfpss2 3692 . . . . . . . 8  |-  ( ( `' ( W `  Z ) " {
( H `  ( card `  Z ) ) } )  C.  Z  <->  ( ( `' ( W `
 Z ) " { ( H `  ( card `  Z )
) } )  C_  Z  /\  -.  ( `' ( W `  Z
) " { ( H `  ( card `  Z ) ) } )  =  Z ) )
153152baib 944 . . . . . . 7  |-  ( ( `' ( W `  Z ) " {
( H `  ( card `  Z ) ) } )  C_  Z  ->  ( ( `' ( W `  Z )
" { ( H `
 ( card `  Z
) ) } ) 
C.  Z  <->  -.  ( `' ( W `  Z ) " {
( H `  ( card `  Z ) ) } )  =  Z ) )
154129, 153syl 17 . . . . . 6  |-  ( ph  ->  ( ( `' ( W `  Z )
" { ( H `
 ( card `  Z
) ) } ) 
C.  Z  <->  -.  ( `' ( W `  Z ) " {
( H `  ( card `  Z ) ) } )  =  Z ) )
155 php3 8146 . . . . . . . . 9  |-  ( ( Z  e.  Fin  /\  ( `' ( W `  Z ) " {
( H `  ( card `  Z ) ) } )  C.  Z
)  ->  ( `' ( W `  Z )
" { ( H `
 ( card `  Z
) ) } ) 
~<  Z )
156 sdomnen 7984 . . . . . . . . 9  |-  ( ( `' ( W `  Z ) " {
( H `  ( card `  Z ) ) } )  ~<  Z  ->  -.  ( `' ( W `
 Z ) " { ( H `  ( card `  Z )
) } )  ~~  Z )
157155, 156syl 17 . . . . . . . 8  |-  ( ( Z  e.  Fin  /\  ( `' ( W `  Z ) " {
( H `  ( card `  Z ) ) } )  C.  Z
)  ->  -.  ( `' ( W `  Z ) " {
( H `  ( card `  Z ) ) } )  ~~  Z
)
158157ex 450 . . . . . . 7  |-  ( Z  e.  Fin  ->  (
( `' ( W `
 Z ) " { ( H `  ( card `  Z )
) } )  C.  Z  ->  -.  ( `' ( W `  Z )
" { ( H `
 ( card `  Z
) ) } ) 
~~  Z ) )
159117, 158syl 17 . . . . . 6  |-  ( ph  ->  ( ( `' ( W `  Z )
" { ( H `
 ( card `  Z
) ) } ) 
C.  Z  ->  -.  ( `' ( W `  Z ) " {
( H `  ( card `  Z ) ) } )  ~~  Z
) )
160154, 159sylbird 250 . . . . 5  |-  ( ph  ->  ( -.  ( `' ( W `  Z
) " { ( H `  ( card `  Z ) ) } )  =  Z  ->  -.  ( `' ( W `
 Z ) " { ( H `  ( card `  Z )
) } )  ~~  Z ) )
161151, 160mt4d 152 . . . 4  |-  ( ph  ->  ( `' ( W `
 Z ) " { ( H `  ( card `  Z )
) } )  =  Z )
162120, 161eleqtrrd 2704 . . 3  |-  ( ph  ->  ( H `  ( card `  Z ) )  e.  ( `' ( W `  Z )
" { ( H `
 ( card `  Z
) ) } ) )
163 fvex 6201 . . . 4  |-  ( H `
 ( card `  Z
) )  e.  _V
164163eliniseg 5494 . . . 4  |-  ( ( H `  ( card `  Z ) )  e. 
_V  ->  ( ( H `
 ( card `  Z
) )  e.  ( `' ( W `  Z ) " {
( H `  ( card `  Z ) ) } )  <->  ( H `  ( card `  Z
) ) ( W `
 Z ) ( H `  ( card `  Z ) ) ) )
165163, 164ax-mp 5 . . 3  |-  ( ( H `  ( card `  Z ) )  e.  ( `' ( W `
 Z ) " { ( H `  ( card `  Z )
) } )  <->  ( H `  ( card `  Z
) ) ( W `
 Z ) ( H `  ( card `  Z ) ) )
166162, 165sylib 208 . 2  |-  ( ph  ->  ( H `  ( card `  Z ) ) ( W `  Z
) ( H `  ( card `  Z )
) )
16726simprd 479 . . . . 5  |-  ( ph  ->  ( ( W `  Z )  We  Z  /\  A. b  e.  Z  [. ( `' ( W `
 Z ) " { b } )  /  v ]. (
v F ( ( W `  Z )  i^i  ( v  X.  v ) ) )  =  b ) )
168167simpld 475 . . . 4  |-  ( ph  ->  ( W `  Z
)  We  Z )
169 weso 5105 . . . 4  |-  ( ( W `  Z )  We  Z  ->  ( W `  Z )  Or  Z )
170168, 169syl 17 . . 3  |-  ( ph  ->  ( W `  Z
)  Or  Z )
171 sonr 5056 . . 3  |-  ( ( ( W `  Z
)  Or  Z  /\  ( H `  ( card `  Z ) )  e.  Z )  ->  -.  ( H `  ( card `  Z ) ) ( W `  Z ) ( H `  ( card `  Z ) ) )
172170, 120, 171syl2anc 693 . 2  |-  ( ph  ->  -.  ( H `  ( card `  Z )
) ( W `  Z ) ( H `
 ( card `  Z
) ) )
173166, 172pm2.65i 185 1  |-  -.  ph
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200   [.wsbc 3435    \ cdif 3571    i^i cin 3573    C_ wss 3574    C. wpss 3575   ifcif 4086   ~Pcpw 4158   {csn 4177   U.cuni 4436   |^|cint 4475   U_ciun 4520   class class class wbr 4653   {copab 4712    Or wor 5034    We wwe 5072    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117   Oncon0 5723   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   omcom 7065    ^m cmap 7857    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954   Fincfn 7955   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765
This theorem is referenced by:  pwfseqlem5  9485
  Copyright terms: Public domain W3C validator