MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcompr Structured version   Visualization version   Unicode version

Theorem mulcompr 9845
Description: Multiplication of positive reals is commutative. Proposition 9-3.7(ii) of [Gleason] p. 124. (Contributed by NM, 19-Nov-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulcompr  |-  ( A  .P.  B )  =  ( B  .P.  A
)

Proof of Theorem mulcompr
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpv 9833 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  =  { x  |  E. z  e.  A  E. y  e.  B  x  =  ( z  .Q  y ) } )
2 mpv 9833 . . . . 5  |-  ( ( B  e.  P.  /\  A  e.  P. )  ->  ( B  .P.  A
)  =  { x  |  E. y  e.  B  E. z  e.  A  x  =  ( y  .Q  z ) } )
3 mulcomnq 9775 . . . . . . . . 9  |-  ( y  .Q  z )  =  ( z  .Q  y
)
43eqeq2i 2634 . . . . . . . 8  |-  ( x  =  ( y  .Q  z )  <->  x  =  ( z  .Q  y
) )
542rexbii 3042 . . . . . . 7  |-  ( E. y  e.  B  E. z  e.  A  x  =  ( y  .Q  z )  <->  E. y  e.  B  E. z  e.  A  x  =  ( z  .Q  y
) )
6 rexcom 3099 . . . . . . 7  |-  ( E. y  e.  B  E. z  e.  A  x  =  ( z  .Q  y )  <->  E. z  e.  A  E. y  e.  B  x  =  ( z  .Q  y
) )
75, 6bitri 264 . . . . . 6  |-  ( E. y  e.  B  E. z  e.  A  x  =  ( y  .Q  z )  <->  E. z  e.  A  E. y  e.  B  x  =  ( z  .Q  y
) )
87abbii 2739 . . . . 5  |-  { x  |  E. y  e.  B  E. z  e.  A  x  =  ( y  .Q  z ) }  =  { x  |  E. z  e.  A  E. y  e.  B  x  =  ( z  .Q  y ) }
92, 8syl6eq 2672 . . . 4  |-  ( ( B  e.  P.  /\  A  e.  P. )  ->  ( B  .P.  A
)  =  { x  |  E. z  e.  A  E. y  e.  B  x  =  ( z  .Q  y ) } )
109ancoms 469 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( B  .P.  A
)  =  { x  |  E. z  e.  A  E. y  e.  B  x  =  ( z  .Q  y ) } )
111, 10eqtr4d 2659 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  =  ( B  .P.  A ) )
12 dmmp 9835 . . 3  |-  dom  .P.  =  ( P.  X.  P. )
1312ndmovcom 6821 . 2  |-  ( -.  ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  =  ( B  .P.  A ) )
1411, 13pm2.61i 176 1  |-  ( A  .P.  B )  =  ( B  .P.  A
)
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913  (class class class)co 6650    .Q cmq 9678   P.cnp 9681    .P. cmp 9684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ni 9694  df-mi 9696  df-lti 9697  df-mpq 9731  df-enq 9733  df-nq 9734  df-erq 9735  df-mq 9737  df-1nq 9738  df-np 9803  df-mp 9806
This theorem is referenced by:  mulcmpblnrlem  9891  mulcomsr  9910  mulasssr  9911  m1m1sr  9914  recexsrlem  9924  mulgt0sr  9926
  Copyright terms: Public domain W3C validator