MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcompr Structured version   Visualization version   Unicode version

Theorem addcompr 9843
Description: Addition of positive reals is commutative. Proposition 9-3.5(ii) of [Gleason] p. 123. (Contributed by NM, 19-Nov-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addcompr  |-  ( A  +P.  B )  =  ( B  +P.  A
)

Proof of Theorem addcompr
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plpv 9832 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  =  { x  |  E. z  e.  A  E. y  e.  B  x  =  ( z  +Q  y ) } )
2 plpv 9832 . . . . 5  |-  ( ( B  e.  P.  /\  A  e.  P. )  ->  ( B  +P.  A
)  =  { x  |  E. y  e.  B  E. z  e.  A  x  =  ( y  +Q  z ) } )
3 addcomnq 9773 . . . . . . . . 9  |-  ( y  +Q  z )  =  ( z  +Q  y
)
43eqeq2i 2634 . . . . . . . 8  |-  ( x  =  ( y  +Q  z )  <->  x  =  ( z  +Q  y
) )
542rexbii 3042 . . . . . . 7  |-  ( E. y  e.  B  E. z  e.  A  x  =  ( y  +Q  z )  <->  E. y  e.  B  E. z  e.  A  x  =  ( z  +Q  y
) )
6 rexcom 3099 . . . . . . 7  |-  ( E. y  e.  B  E. z  e.  A  x  =  ( z  +Q  y )  <->  E. z  e.  A  E. y  e.  B  x  =  ( z  +Q  y
) )
75, 6bitri 264 . . . . . 6  |-  ( E. y  e.  B  E. z  e.  A  x  =  ( y  +Q  z )  <->  E. z  e.  A  E. y  e.  B  x  =  ( z  +Q  y
) )
87abbii 2739 . . . . 5  |-  { x  |  E. y  e.  B  E. z  e.  A  x  =  ( y  +Q  z ) }  =  { x  |  E. z  e.  A  E. y  e.  B  x  =  ( z  +Q  y ) }
92, 8syl6eq 2672 . . . 4  |-  ( ( B  e.  P.  /\  A  e.  P. )  ->  ( B  +P.  A
)  =  { x  |  E. z  e.  A  E. y  e.  B  x  =  ( z  +Q  y ) } )
109ancoms 469 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( B  +P.  A
)  =  { x  |  E. z  e.  A  E. y  e.  B  x  =  ( z  +Q  y ) } )
111, 10eqtr4d 2659 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  =  ( B  +P.  A ) )
12 dmplp 9834 . . 3  |-  dom  +P.  =  ( P.  X.  P. )
1312ndmovcom 6821 . 2  |-  ( -.  ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  =  ( B  +P.  A ) )
1411, 13pm2.61i 176 1  |-  ( A  +P.  B )  =  ( B  +P.  A
)
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913  (class class class)co 6650    +Q cplq 9677   P.cnp 9681    +P. cpp 9683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ni 9694  df-pli 9695  df-mi 9696  df-lti 9697  df-plpq 9730  df-enq 9733  df-nq 9734  df-erq 9735  df-plq 9736  df-1nq 9738  df-np 9803  df-plp 9805
This theorem is referenced by:  enrer  9886  addcmpblnr  9890  mulcmpblnrlem  9891  ltsrpr  9898  addcomsr  9908  mulcomsr  9910  mulasssr  9911  distrsr  9912  ltsosr  9915  0lt1sr  9916  0idsr  9918  1idsr  9919  ltasr  9921  recexsrlem  9924  mulgt0sr  9926  ltpsrpr  9930  map2psrpr  9931
  Copyright terms: Public domain W3C validator