Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0sn Structured version   Visualization version   Unicode version

Theorem sge0sn 40596
Description: A sum of a nonnegative extended real is the term. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0sn.1  |-  ( ph  ->  A  e.  V )
sge0sn.2  |-  ( ph  ->  F : { A }
--> ( 0 [,] +oo ) )
Assertion
Ref Expression
sge0sn  |-  ( ph  ->  (Σ^ `  F )  =  ( F `  A ) )

Proof of Theorem sge0sn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 4908 . . . . 5  |-  { A }  e.  _V
21a1i 11 . . . 4  |-  ( (
ph  /\  ( F `  A )  = +oo )  ->  { A }  e.  _V )
3 sge0sn.2 . . . . 5  |-  ( ph  ->  F : { A }
--> ( 0 [,] +oo ) )
43adantr 481 . . . 4  |-  ( (
ph  /\  ( F `  A )  = +oo )  ->  F : { A } --> ( 0 [,] +oo ) )
5 id 22 . . . . . . 7  |-  ( ( F `  A )  = +oo  ->  ( F `  A )  = +oo )
65eqcomd 2628 . . . . . 6  |-  ( ( F `  A )  = +oo  -> +oo  =  ( F `  A ) )
76adantl 482 . . . . 5  |-  ( (
ph  /\  ( F `  A )  = +oo )  -> +oo  =  ( F `  A )
)
8 ffun 6048 . . . . . . . 8  |-  ( F : { A } --> ( 0 [,] +oo )  ->  Fun  F )
93, 8syl 17 . . . . . . 7  |-  ( ph  ->  Fun  F )
109adantr 481 . . . . . 6  |-  ( (
ph  /\  ( F `  A )  = +oo )  ->  Fun  F )
11 sge0sn.1 . . . . . . . . 9  |-  ( ph  ->  A  e.  V )
12 snidg 4206 . . . . . . . . 9  |-  ( A  e.  V  ->  A  e.  { A } )
1311, 12syl 17 . . . . . . . 8  |-  ( ph  ->  A  e.  { A } )
14 fdm 6051 . . . . . . . . . 10  |-  ( F : { A } --> ( 0 [,] +oo )  ->  dom  F  =  { A } )
153, 14syl 17 . . . . . . . . 9  |-  ( ph  ->  dom  F  =  { A } )
1615eqcomd 2628 . . . . . . . 8  |-  ( ph  ->  { A }  =  dom  F )
1713, 16eleqtrd 2703 . . . . . . 7  |-  ( ph  ->  A  e.  dom  F
)
1817adantr 481 . . . . . 6  |-  ( (
ph  /\  ( F `  A )  = +oo )  ->  A  e.  dom  F )
19 fvelrn 6352 . . . . . 6  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  e.  ran  F
)
2010, 18, 19syl2anc 693 . . . . 5  |-  ( (
ph  /\  ( F `  A )  = +oo )  ->  ( F `  A )  e.  ran  F )
217, 20eqeltrd 2701 . . . 4  |-  ( (
ph  /\  ( F `  A )  = +oo )  -> +oo  e.  ran  F )
222, 4, 21sge0pnfval 40590 . . 3  |-  ( (
ph  /\  ( F `  A )  = +oo )  ->  (Σ^ `  F )  = +oo )
23 simpr 477 . . 3  |-  ( (
ph  /\  ( F `  A )  = +oo )  ->  ( F `  A )  = +oo )
2422, 23eqtr4d 2659 . 2  |-  ( (
ph  /\  ( F `  A )  = +oo )  ->  (Σ^ `  F )  =  ( F `  A ) )
251a1i 11 . . . 4  |-  ( (
ph  /\  -.  ( F `  A )  = +oo )  ->  { A }  e.  _V )
263adantr 481 . . . . 5  |-  ( (
ph  /\  -.  ( F `  A )  = +oo )  ->  F : { A } --> ( 0 [,] +oo ) )
27 elsni 4194 . . . . . . . . 9  |-  ( +oo  e.  { ( F `  A ) }  -> +oo  =  ( F `  A ) )
2827eqcomd 2628 . . . . . . . 8  |-  ( +oo  e.  { ( F `  A ) }  ->  ( F `  A )  = +oo )
2928con3i 150 . . . . . . 7  |-  ( -.  ( F `  A
)  = +oo  ->  -. +oo  e.  { ( F `
 A ) } )
3029adantl 482 . . . . . 6  |-  ( (
ph  /\  -.  ( F `  A )  = +oo )  ->  -. +oo  e.  { ( F `
 A ) } )
3111, 3rnsnf 39370 . . . . . . . 8  |-  ( ph  ->  ran  F  =  {
( F `  A
) } )
3231eqcomd 2628 . . . . . . 7  |-  ( ph  ->  { ( F `  A ) }  =  ran  F )
3332adantr 481 . . . . . 6  |-  ( (
ph  /\  -.  ( F `  A )  = +oo )  ->  { ( F `  A ) }  =  ran  F
)
3430, 33neleqtrd 2722 . . . . 5  |-  ( (
ph  /\  -.  ( F `  A )  = +oo )  ->  -. +oo  e.  ran  F )
3526, 34fge0iccico 40587 . . . 4  |-  ( (
ph  /\  -.  ( F `  A )  = +oo )  ->  F : { A } --> ( 0 [,) +oo ) )
3625, 35sge0reval 40589 . . 3  |-  ( (
ph  /\  -.  ( F `  A )  = +oo )  ->  (Σ^ `  F
)  =  sup ( ran  ( x  e.  ( ~P { A }  i^i  Fin )  |->  sum_ y  e.  x  ( F `  y ) ) , 
RR* ,  <  ) )
37 sum0 14452 . . . . . . . 8  |-  sum_ y  e.  (/)  ( F `  y )  =  0
3837eqcomi 2631 . . . . . . 7  |-  0  =  sum_ y  e.  (/)  ( F `  y )
3938a1i 11 . . . . . 6  |-  ( (
ph  /\  -.  ( F `  A )  = +oo )  ->  0  =  sum_ y  e.  (/)  ( F `  y ) )
40 nfcvd 2765 . . . . . . . 8  |-  ( (
ph  /\  -.  ( F `  A )  = +oo )  ->  F/_ y
( F `  A
) )
41 nfv 1843 . . . . . . . 8  |-  F/ y ( ph  /\  -.  ( F `  A )  = +oo )
42 fveq2 6191 . . . . . . . . 9  |-  ( y  =  A  ->  ( F `  y )  =  ( F `  A ) )
4342adantl 482 . . . . . . . 8  |-  ( ( ( ph  /\  -.  ( F `  A )  = +oo )  /\  y  =  A )  ->  ( F `  y
)  =  ( F `
 A ) )
4411adantr 481 . . . . . . . 8  |-  ( (
ph  /\  -.  ( F `  A )  = +oo )  ->  A  e.  V )
45 rge0ssre 12280 . . . . . . . . . 10  |-  ( 0 [,) +oo )  C_  RR
46 ax-resscn 9993 . . . . . . . . . 10  |-  RR  C_  CC
4745, 46sstri 3612 . . . . . . . . 9  |-  ( 0 [,) +oo )  C_  CC
4844, 12syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  -.  ( F `  A )  = +oo )  ->  A  e.  { A } )
4935, 48ffvelrnd 6360 . . . . . . . . 9  |-  ( (
ph  /\  -.  ( F `  A )  = +oo )  ->  ( F `  A )  e.  ( 0 [,) +oo ) )
5047, 49sseldi 3601 . . . . . . . 8  |-  ( (
ph  /\  -.  ( F `  A )  = +oo )  ->  ( F `  A )  e.  CC )
5140, 41, 43, 44, 50sumsnd 39185 . . . . . . 7  |-  ( (
ph  /\  -.  ( F `  A )  = +oo )  ->  sum_ y  e.  { A }  ( F `  y )  =  ( F `  A ) )
5251eqcomd 2628 . . . . . 6  |-  ( (
ph  /\  -.  ( F `  A )  = +oo )  ->  ( F `  A )  =  sum_ y  e.  { A }  ( F `  y ) )
5339, 52preq12d 4276 . . . . 5  |-  ( (
ph  /\  -.  ( F `  A )  = +oo )  ->  { 0 ,  ( F `  A ) }  =  { sum_ y  e.  (/)  ( F `  y ) ,  sum_ y  e.  { A }  ( F `  y ) } )
5453supeq1d 8352 . . . 4  |-  ( (
ph  /\  -.  ( F `  A )  = +oo )  ->  sup ( { 0 ,  ( F `  A ) } ,  RR* ,  <  )  =  sup ( {
sum_ y  e.  (/)  ( F `  y ) ,  sum_ y  e.  { A }  ( F `  y ) } ,  RR* ,  <  ) )
55 xrltso 11974 . . . . . . . 8  |-  <  Or  RR*
5655a1i 11 . . . . . . 7  |-  ( ph  ->  <  Or  RR* )
57 0xr 10086 . . . . . . . 8  |-  0  e.  RR*
5857a1i 11 . . . . . . 7  |-  ( ph  ->  0  e.  RR* )
59 iccssxr 12256 . . . . . . . 8  |-  ( 0 [,] +oo )  C_  RR*
603, 13ffvelrnd 6360 . . . . . . . 8  |-  ( ph  ->  ( F `  A
)  e.  ( 0 [,] +oo ) )
6159, 60sseldi 3601 . . . . . . 7  |-  ( ph  ->  ( F `  A
)  e.  RR* )
62 suppr 8377 . . . . . . 7  |-  ( (  <  Or  RR*  /\  0  e.  RR*  /\  ( F `
 A )  e. 
RR* )  ->  sup ( { 0 ,  ( F `  A ) } ,  RR* ,  <  )  =  if ( ( F `  A )  <  0 ,  0 ,  ( F `  A ) ) )
6356, 58, 61, 62syl3anc 1326 . . . . . 6  |-  ( ph  ->  sup ( { 0 ,  ( F `  A ) } ,  RR* ,  <  )  =  if ( ( F `
 A )  <  0 ,  0 ,  ( F `  A
) ) )
64 pnfxr 10092 . . . . . . . . . . 11  |- +oo  e.  RR*
6564a1i 11 . . . . . . . . . 10  |-  ( ph  -> +oo  e.  RR* )
6658, 65, 603jca 1242 . . . . . . . . 9  |-  ( ph  ->  ( 0  e.  RR*  /\ +oo  e.  RR*  /\  ( F `  A )  e.  ( 0 [,] +oo ) ) )
67 iccgelb 12230 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR*  /\  ( F `
 A )  e.  ( 0 [,] +oo ) )  ->  0  <_  ( F `  A
) )
6866, 67syl 17 . . . . . . . 8  |-  ( ph  ->  0  <_  ( F `  A ) )
6958, 61xrlenltd 10104 . . . . . . . 8  |-  ( ph  ->  ( 0  <_  ( F `  A )  <->  -.  ( F `  A
)  <  0 ) )
7068, 69mpbid 222 . . . . . . 7  |-  ( ph  ->  -.  ( F `  A )  <  0
)
7170iffalsed 4097 . . . . . 6  |-  ( ph  ->  if ( ( F `
 A )  <  0 ,  0 ,  ( F `  A
) )  =  ( F `  A ) )
7263, 71eqtr2d 2657 . . . . 5  |-  ( ph  ->  ( F `  A
)  =  sup ( { 0 ,  ( F `  A ) } ,  RR* ,  <  ) )
7372adantr 481 . . . 4  |-  ( (
ph  /\  -.  ( F `  A )  = +oo )  ->  ( F `  A )  =  sup ( { 0 ,  ( F `  A ) } ,  RR* ,  <  ) )
74 pwsn 4428 . . . . . . . . . . . 12  |-  ~P { A }  =  { (/)
,  { A } }
7574ineq1i 3810 . . . . . . . . . . 11  |-  ( ~P { A }  i^i  Fin )  =  ( {
(/) ,  { A } }  i^i  Fin )
76 0fin 8188 . . . . . . . . . . . . 13  |-  (/)  e.  Fin
77 snfi 8038 . . . . . . . . . . . . 13  |-  { A }  e.  Fin
78 prssi 4353 . . . . . . . . . . . . 13  |-  ( (
(/)  e.  Fin  /\  { A }  e.  Fin )  ->  { (/) ,  { A } }  C_  Fin )
7976, 77, 78mp2an 708 . . . . . . . . . . . 12  |-  { (/) ,  { A } }  C_ 
Fin
80 df-ss 3588 . . . . . . . . . . . . 13  |-  ( {
(/) ,  { A } }  C_  Fin  <->  ( { (/)
,  { A } }  i^i  Fin )  =  { (/) ,  { A } } )
8180biimpi 206 . . . . . . . . . . . 12  |-  ( {
(/) ,  { A } }  C_  Fin  ->  ( { (/) ,  { A } }  i^i  Fin )  =  { (/) ,  { A } } )
8279, 81ax-mp 5 . . . . . . . . . . 11  |-  ( {
(/) ,  { A } }  i^i  Fin )  =  { (/) ,  { A } }
8375, 82eqtri 2644 . . . . . . . . . 10  |-  ( ~P { A }  i^i  Fin )  =  { (/) ,  { A } }
84 mpteq1 4737 . . . . . . . . . 10  |-  ( ( ~P { A }  i^i  Fin )  =  { (/)
,  { A } }  ->  ( x  e.  ( ~P { A }  i^i  Fin )  |->  sum_ y  e.  x  ( F `  y ) )  =  ( x  e.  { (/) ,  { A } }  |->  sum_ y  e.  x  ( F `  y ) ) )
8583, 84ax-mp 5 . . . . . . . . 9  |-  ( x  e.  ( ~P { A }  i^i  Fin )  |-> 
sum_ y  e.  x  ( F `  y ) )  =  ( x  e.  { (/) ,  { A } }  |->  sum_ y  e.  x  ( F `  y ) )
86 0ex 4790 . . . . . . . . . . . . 13  |-  (/)  e.  _V
8786a1i 11 . . . . . . . . . . . 12  |-  ( T. 
->  (/)  e.  _V )
881a1i 11 . . . . . . . . . . . 12  |-  ( T. 
->  { A }  e.  _V )
89 sumex 14418 . . . . . . . . . . . . 13  |-  sum_ y  e.  (/)  ( F `  y )  e.  _V
9089a1i 11 . . . . . . . . . . . 12  |-  ( T. 
->  sum_ y  e.  (/)  ( F `  y )  e.  _V )
91 sumex 14418 . . . . . . . . . . . . 13  |-  sum_ y  e.  { A }  ( F `  y )  e.  _V
9291a1i 11 . . . . . . . . . . . 12  |-  ( T. 
->  sum_ y  e.  { A }  ( F `  y )  e.  _V )
93 sumeq1 14419 . . . . . . . . . . . . 13  |-  ( x  =  (/)  ->  sum_ y  e.  x  ( F `  y )  =  sum_ y  e.  (/)  ( F `
 y ) )
9493adantl 482 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  =  (/) )  ->  sum_ y  e.  x  ( F `  y )  =  sum_ y  e.  (/)  ( F `
 y ) )
95 sumeq1 14419 . . . . . . . . . . . . 13  |-  ( x  =  { A }  -> 
sum_ y  e.  x  ( F `  y )  =  sum_ y  e.  { A }  ( F `  y ) )
9695adantl 482 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  =  { A } )  ->  sum_ y  e.  x  ( F `  y )  =  sum_ y  e.  { A }  ( F `  y ) )
9787, 88, 90, 92, 94, 96fmptpr 6438 . . . . . . . . . . 11  |-  ( T. 
->  { <. (/) ,  sum_ y  e.  (/)  ( F `  y ) >. ,  <. { A } ,  sum_ y  e.  { A }  ( F `  y ) >. }  =  ( x  e.  { (/) ,  { A } }  |-> 
sum_ y  e.  x  ( F `  y ) ) )
9897trud 1493 . . . . . . . . . 10  |-  { <. (/)
,  sum_ y  e.  (/)  ( F `  y )
>. ,  <. { A } ,  sum_ y  e. 
{ A }  ( F `  y ) >. }  =  ( x  e.  { (/) ,  { A } }  |->  sum_ y  e.  x  ( F `  y ) )
9998eqcomi 2631 . . . . . . . . 9  |-  ( x  e.  { (/) ,  { A } }  |->  sum_ y  e.  x  ( F `  y ) )  =  { <. (/) ,  sum_ y  e.  (/)  ( F `  y ) >. ,  <. { A } ,  sum_ y  e.  { A }  ( F `  y ) >. }
10085, 99eqtri 2644 . . . . . . . 8  |-  ( x  e.  ( ~P { A }  i^i  Fin )  |-> 
sum_ y  e.  x  ( F `  y ) )  =  { <. (/)
,  sum_ y  e.  (/)  ( F `  y )
>. ,  <. { A } ,  sum_ y  e. 
{ A }  ( F `  y ) >. }
101100rneqi 5352 . . . . . . 7  |-  ran  (
x  e.  ( ~P { A }  i^i  Fin )  |->  sum_ y  e.  x  ( F `  y ) )  =  ran  { <.
(/) ,  sum_ y  e.  (/)  ( F `  y
) >. ,  <. { A } ,  sum_ y  e. 
{ A }  ( F `  y ) >. }
102 rnpropg 5615 . . . . . . . 8  |-  ( (
(/)  e.  _V  /\  { A }  e.  _V )  ->  ran  { <. (/) ,  sum_ y  e.  (/)  ( F `
 y ) >. ,  <. { A } ,  sum_ y  e.  { A }  ( F `  y ) >. }  =  { sum_ y  e.  (/)  ( F `  y ) ,  sum_ y  e.  { A }  ( F `  y ) } )
10386, 1, 102mp2an 708 . . . . . . 7  |-  ran  { <.
(/) ,  sum_ y  e.  (/)  ( F `  y
) >. ,  <. { A } ,  sum_ y  e. 
{ A }  ( F `  y ) >. }  =  { sum_ y  e.  (/)  ( F `
 y ) , 
sum_ y  e.  { A }  ( F `  y ) }
104101, 103eqtri 2644 . . . . . 6  |-  ran  (
x  e.  ( ~P { A }  i^i  Fin )  |->  sum_ y  e.  x  ( F `  y ) )  =  { sum_ y  e.  (/)  ( F `
 y ) , 
sum_ y  e.  { A }  ( F `  y ) }
105104supeq1i 8353 . . . . 5  |-  sup ( ran  ( x  e.  ( ~P { A }  i^i  Fin )  |->  sum_ y  e.  x  ( F `  y ) ) , 
RR* ,  <  )  =  sup ( { sum_ y  e.  (/)  ( F `
 y ) , 
sum_ y  e.  { A }  ( F `  y ) } ,  RR* ,  <  )
106105a1i 11 . . . 4  |-  ( (
ph  /\  -.  ( F `  A )  = +oo )  ->  sup ( ran  ( x  e.  ( ~P { A }  i^i  Fin )  |->  sum_ y  e.  x  ( F `  y ) ) ,  RR* ,  <  )  =  sup ( {
sum_ y  e.  (/)  ( F `  y ) ,  sum_ y  e.  { A }  ( F `  y ) } ,  RR* ,  <  ) )
10754, 73, 1063eqtr4d 2666 . . 3  |-  ( (
ph  /\  -.  ( F `  A )  = +oo )  ->  ( F `  A )  =  sup ( ran  (
x  e.  ( ~P { A }  i^i  Fin )  |->  sum_ y  e.  x  ( F `  y ) ) ,  RR* ,  <  ) )
10836, 107eqtr4d 2659 . 2  |-  ( (
ph  /\  -.  ( F `  A )  = +oo )  ->  (Σ^ `  F
)  =  ( F `
 A ) )
10924, 108pm2.61dan 832 1  |-  ( ph  ->  (Σ^ `  F )  =  ( F `  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   T. wtru 1484    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158   {csn 4177   {cpr 4179   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    Or wor 5034   dom cdm 5114   ran crn 5115   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   [,)cico 12177   [,]cicc 12178   sum_csu 14416  Σ^csumge0 40579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-sumge0 40580
This theorem is referenced by:  sge0snmpt  40600  sge0sup  40608  sge0snmptf  40654  caratheodorylem1  40740
  Copyright terms: Public domain W3C validator