| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nosupdm | Structured version Visualization version Unicode version | ||
| Description: The domain of the surreal supremum when there is no maximum. The primary point of this theorem is to change bound variable. (Contributed by Scott Fenton, 6-Dec-2021.) |
| Ref | Expression |
|---|---|
| nosupdm.1 |
|
| Ref | Expression |
|---|---|
| nosupdm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nosupdm.1 |
. . . . 5
| |
| 2 | iffalse 4095 |
. . . . 5
| |
| 3 | 1, 2 | syl5eq 2668 |
. . . 4
|
| 4 | 3 | dmeqd 5326 |
. . 3
|
| 5 | iotaex 5868 |
. . . 4
| |
| 6 | eqid 2622 |
. . . 4
| |
| 7 | 5, 6 | dmmpti 6023 |
. . 3
|
| 8 | 4, 7 | syl6eq 2672 |
. 2
|
| 9 | dmeq 5324 |
. . . . . . 7
| |
| 10 | 9 | eleq2d 2687 |
. . . . . 6
|
| 11 | breq1 4656 |
. . . . . . . . . 10
| |
| 12 | 11 | notbid 308 |
. . . . . . . . 9
|
| 13 | reseq1 5390 |
. . . . . . . . . 10
| |
| 14 | 13 | eqeq2d 2632 |
. . . . . . . . 9
|
| 15 | 12, 14 | imbi12d 334 |
. . . . . . . 8
|
| 16 | 15 | cbvralv 3171 |
. . . . . . 7
|
| 17 | breq2 4657 |
. . . . . . . . . 10
| |
| 18 | 17 | notbid 308 |
. . . . . . . . 9
|
| 19 | reseq1 5390 |
. . . . . . . . . 10
| |
| 20 | 19 | eqeq1d 2624 |
. . . . . . . . 9
|
| 21 | 18, 20 | imbi12d 334 |
. . . . . . . 8
|
| 22 | 21 | ralbidv 2986 |
. . . . . . 7
|
| 23 | 16, 22 | syl5bb 272 |
. . . . . 6
|
| 24 | 10, 23 | anbi12d 747 |
. . . . 5
|
| 25 | 24 | cbvrexv 3172 |
. . . 4
|
| 26 | eleq1 2689 |
. . . . . 6
| |
| 27 | suceq 5790 |
. . . . . . . . . 10
| |
| 28 | 27 | reseq2d 5396 |
. . . . . . . . 9
|
| 29 | 27 | reseq2d 5396 |
. . . . . . . . 9
|
| 30 | 28, 29 | eqeq12d 2637 |
. . . . . . . 8
|
| 31 | 30 | imbi2d 330 |
. . . . . . 7
|
| 32 | 31 | ralbidv 2986 |
. . . . . 6
|
| 33 | 26, 32 | anbi12d 747 |
. . . . 5
|
| 34 | 33 | rexbidv 3052 |
. . . 4
|
| 35 | 25, 34 | syl5bb 272 |
. . 3
|
| 36 | 35 | cbvabv 2747 |
. 2
|
| 37 | 8, 36 | syl6eq 2672 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-res 5126 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 |
| This theorem is referenced by: nosupbnd1lem3 31856 nosupbnd1lem5 31858 nosupbnd2 31862 |
| Copyright terms: Public domain | W3C validator |