Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclscls00 Structured version   Visualization version   Unicode version

Theorem ntrclscls00 38364
Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that the closure of the empty set is the empty set hold equally. (Contributed by RP, 1-Jun-2021.)
Hypotheses
Ref Expression
ntrcls.o  |-  O  =  ( i  e.  _V  |->  ( k  e.  ( ~P i  ^m  ~P i )  |->  ( j  e.  ~P i  |->  ( i  \  ( k `
 ( i  \ 
j ) ) ) ) ) )
ntrcls.d  |-  D  =  ( O `  B
)
ntrcls.r  |-  ( ph  ->  I D K )
Assertion
Ref Expression
ntrclscls00  |-  ( ph  ->  ( ( I `  B )  =  B  <-> 
( K `  (/) )  =  (/) ) )
Distinct variable groups:    B, i,
j, k    j, I,
k    j, K, k    ph, i,
j, k
Allowed substitution hints:    D( i, j, k)    I( i)    K( i)    O( i, j, k)

Proof of Theorem ntrclscls00
StepHypRef Expression
1 ntrcls.o . . . . . 6  |-  O  =  ( i  e.  _V  |->  ( k  e.  ( ~P i  ^m  ~P i )  |->  ( j  e.  ~P i  |->  ( i  \  ( k `
 ( i  \ 
j ) ) ) ) ) )
2 ntrcls.d . . . . . 6  |-  D  =  ( O `  B
)
3 ntrcls.r . . . . . 6  |-  ( ph  ->  I D K )
41, 2, 3ntrclsfv1 38353 . . . . 5  |-  ( ph  ->  ( D `  I
)  =  K )
54fveq1d 6193 . . . 4  |-  ( ph  ->  ( ( D `  I ) `  (/) )  =  ( K `  (/) ) )
62, 3ntrclsbex 38332 . . . . 5  |-  ( ph  ->  B  e.  _V )
71, 2, 3ntrclsiex 38351 . . . . 5  |-  ( ph  ->  I  e.  ( ~P B  ^m  ~P B
) )
8 eqid 2622 . . . . 5  |-  ( D `
 I )  =  ( D `  I
)
9 0elpw 4834 . . . . . 6  |-  (/)  e.  ~P B
109a1i 11 . . . . 5  |-  ( ph  -> 
(/)  e.  ~P B
)
11 eqid 2622 . . . . 5  |-  ( ( D `  I ) `
 (/) )  =  ( ( D `  I
) `  (/) )
121, 2, 6, 7, 8, 10, 11dssmapfv3d 38313 . . . 4  |-  ( ph  ->  ( ( D `  I ) `  (/) )  =  ( B  \  (
I `  ( B  \  (/) ) ) ) )
135, 12eqtr3d 2658 . . 3  |-  ( ph  ->  ( K `  (/) )  =  ( B  \  (
I `  ( B  \  (/) ) ) ) )
14 dif0 3950 . . . . . . 7  |-  ( B 
\  (/) )  =  B
1514fveq2i 6194 . . . . . 6  |-  ( I `
 ( B  \  (/) ) )  =  ( I `  B )
16 id 22 . . . . . 6  |-  ( ( I `  B )  =  B  ->  (
I `  B )  =  B )
1715, 16syl5eq 2668 . . . . 5  |-  ( ( I `  B )  =  B  ->  (
I `  ( B  \  (/) ) )  =  B )
1817difeq2d 3728 . . . 4  |-  ( ( I `  B )  =  B  ->  ( B  \  ( I `  ( B  \  (/) ) ) )  =  ( B 
\  B ) )
19 difid 3948 . . . 4  |-  ( B 
\  B )  =  (/)
2018, 19syl6eq 2672 . . 3  |-  ( ( I `  B )  =  B  ->  ( B  \  ( I `  ( B  \  (/) ) ) )  =  (/) )
2113, 20sylan9eq 2676 . 2  |-  ( (
ph  /\  ( I `  B )  =  B )  ->  ( K `  (/) )  =  (/) )
22 pwidg 4173 . . . . 5  |-  ( B  e.  _V  ->  B  e.  ~P B )
236, 22syl 17 . . . 4  |-  ( ph  ->  B  e.  ~P B
)
241, 2, 3, 23ntrclsfv 38357 . . 3  |-  ( ph  ->  ( I `  B
)  =  ( B 
\  ( K `  ( B  \  B ) ) ) )
2519fveq2i 6194 . . . . . 6  |-  ( K `
 ( B  \  B ) )  =  ( K `  (/) )
26 id 22 . . . . . 6  |-  ( ( K `  (/) )  =  (/)  ->  ( K `  (/) )  =  (/) )
2725, 26syl5eq 2668 . . . . 5  |-  ( ( K `  (/) )  =  (/)  ->  ( K `  ( B  \  B ) )  =  (/) )
2827difeq2d 3728 . . . 4  |-  ( ( K `  (/) )  =  (/)  ->  ( B  \ 
( K `  ( B  \  B ) ) )  =  ( B 
\  (/) ) )
2928, 14syl6eq 2672 . . 3  |-  ( ( K `  (/) )  =  (/)  ->  ( B  \ 
( K `  ( B  \  B ) ) )  =  B )
3024, 29sylan9eq 2676 . 2  |-  ( (
ph  /\  ( K `  (/) )  =  (/) )  ->  ( I `  B )  =  B )
3121, 30impbida 877 1  |-  ( ph  ->  ( ( I `  B )  =  B  <-> 
( K `  (/) )  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571   (/)c0 3915   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    ^m cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator