Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsfv1 Structured version   Visualization version   Unicode version

Theorem ntrclsfv1 38353
Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is a functional relation between them (Contributed by RP, 28-May-2021.)
Hypotheses
Ref Expression
ntrcls.o  |-  O  =  ( i  e.  _V  |->  ( k  e.  ( ~P i  ^m  ~P i )  |->  ( j  e.  ~P i  |->  ( i  \  ( k `
 ( i  \ 
j ) ) ) ) ) )
ntrcls.d  |-  D  =  ( O `  B
)
ntrcls.r  |-  ( ph  ->  I D K )
Assertion
Ref Expression
ntrclsfv1  |-  ( ph  ->  ( D `  I
)  =  K )
Distinct variable groups:    B, i,
j, k    ph, i, j, k
Allowed substitution hints:    D( i, j, k)    I( i, j, k)    K( i, j, k)    O( i, j, k)

Proof of Theorem ntrclsfv1
StepHypRef Expression
1 ntrcls.r . 2  |-  ( ph  ->  I D K )
2 ntrcls.o . . . . . . 7  |-  O  =  ( i  e.  _V  |->  ( k  e.  ( ~P i  ^m  ~P i )  |->  ( j  e.  ~P i  |->  ( i  \  ( k `
 ( i  \ 
j ) ) ) ) ) )
3 ntrcls.d . . . . . . 7  |-  D  =  ( O `  B
)
42, 3, 1ntrclsf1o 38349 . . . . . 6  |-  ( ph  ->  D : ( ~P B  ^m  ~P B
)
-1-1-onto-> ( ~P B  ^m  ~P B ) )
5 f1ofn 6138 . . . . . 6  |-  ( D : ( ~P B  ^m  ~P B ) -1-1-onto-> ( ~P B  ^m  ~P B
)  ->  D  Fn  ( ~P B  ^m  ~P B ) )
64, 5syl 17 . . . . 5  |-  ( ph  ->  D  Fn  ( ~P B  ^m  ~P B
) )
72, 3, 1ntrclsiex 38351 . . . . 5  |-  ( ph  ->  I  e.  ( ~P B  ^m  ~P B
) )
86, 7jca 554 . . . 4  |-  ( ph  ->  ( D  Fn  ( ~P B  ^m  ~P B
)  /\  I  e.  ( ~P B  ^m  ~P B ) ) )
9 fnfun 5988 . . . . . 6  |-  ( D  Fn  ( ~P B  ^m  ~P B )  ->  Fun  D )
109adantr 481 . . . . 5  |-  ( ( D  Fn  ( ~P B  ^m  ~P B
)  /\  I  e.  ( ~P B  ^m  ~P B ) )  ->  Fun  D )
11 fndm 5990 . . . . . . 7  |-  ( D  Fn  ( ~P B  ^m  ~P B )  ->  dom  D  =  ( ~P B  ^m  ~P B
) )
1211eleq2d 2687 . . . . . 6  |-  ( D  Fn  ( ~P B  ^m  ~P B )  -> 
( I  e.  dom  D  <-> 
I  e.  ( ~P B  ^m  ~P B
) ) )
1312biimpar 502 . . . . 5  |-  ( ( D  Fn  ( ~P B  ^m  ~P B
)  /\  I  e.  ( ~P B  ^m  ~P B ) )  ->  I  e.  dom  D )
1410, 13jca 554 . . . 4  |-  ( ( D  Fn  ( ~P B  ^m  ~P B
)  /\  I  e.  ( ~P B  ^m  ~P B ) )  -> 
( Fun  D  /\  I  e.  dom  D ) )
158, 14syl 17 . . 3  |-  ( ph  ->  ( Fun  D  /\  I  e.  dom  D ) )
16 funbrfvb 6238 . . 3  |-  ( ( Fun  D  /\  I  e.  dom  D )  -> 
( ( D `  I )  =  K  <-> 
I D K ) )
1715, 16syl 17 . 2  |-  ( ph  ->  ( ( D `  I )  =  K  <-> 
I D K ) )
181, 17mpbird 247 1  |-  ( ph  ->  ( D `  I
)  =  K )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   Fun wfun 5882    Fn wfn 5883   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    ^m cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by:  ntrclsfv2  38354  ntrclscls00  38364  ntrclsiso  38365  ntrclsk2  38366  ntrclskb  38367  ntrclsk3  38368  ntrclsk13  38369
  Copyright terms: Public domain W3C validator