Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneibex Structured version   Visualization version   Unicode version

Theorem ntrneibex 38371
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator,  F, then the base set exists. (Contributed by RP, 29-May-2021.)
Hypotheses
Ref Expression
ntrnei.o  |-  O  =  ( i  e.  _V ,  j  e.  _V  |->  ( k  e.  ( ~P j  ^m  i
)  |->  ( l  e.  j  |->  { m  e.  i  |  l  e.  ( k `  m
) } ) ) )
ntrnei.f  |-  F  =  ( ~P B O B )
ntrnei.r  |-  ( ph  ->  I F N )
Assertion
Ref Expression
ntrneibex  |-  ( ph  ->  B  e.  _V )
Distinct variable groups:    i, j,
k    i, l, j    i, m, j
Allowed substitution hints:    ph( i, j, k, m, l)    B( i, j, k, m, l)    F( i, j, k, m, l)    I( i, j, k, m, l)    N( i, j, k, m, l)    O( i, j, k, m, l)

Proof of Theorem ntrneibex
Dummy variables  b 
a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ntrnei.o . . 3  |-  O  =  ( i  e.  _V ,  j  e.  _V  |->  ( k  e.  ( ~P j  ^m  i
)  |->  ( l  e.  j  |->  { m  e.  i  |  l  e.  ( k `  m
) } ) ) )
2 oveq2 6658 . . . . 5  |-  ( i  =  a  ->  ( ~P j  ^m  i
)  =  ( ~P j  ^m  a ) )
3 rabeq 3192 . . . . . 6  |-  ( i  =  a  ->  { m  e.  i  |  l  e.  ( k `  m
) }  =  {
m  e.  a  |  l  e.  ( k `
 m ) } )
43mpteq2dv 4745 . . . . 5  |-  ( i  =  a  ->  (
l  e.  j  |->  { m  e.  i  |  l  e.  ( k `
 m ) } )  =  ( l  e.  j  |->  { m  e.  a  |  l  e.  ( k `  m
) } ) )
52, 4mpteq12dv 4733 . . . 4  |-  ( i  =  a  ->  (
k  e.  ( ~P j  ^m  i ) 
|->  ( l  e.  j 
|->  { m  e.  i  |  l  e.  ( k `  m ) } ) )  =  ( k  e.  ( ~P j  ^m  a
)  |->  ( l  e.  j  |->  { m  e.  a  |  l  e.  ( k `  m
) } ) ) )
6 pweq 4161 . . . . . 6  |-  ( j  =  b  ->  ~P j  =  ~P b
)
76oveq1d 6665 . . . . 5  |-  ( j  =  b  ->  ( ~P j  ^m  a
)  =  ( ~P b  ^m  a ) )
8 mpteq1 4737 . . . . 5  |-  ( j  =  b  ->  (
l  e.  j  |->  { m  e.  a  |  l  e.  ( k `
 m ) } )  =  ( l  e.  b  |->  { m  e.  a  |  l  e.  ( k `  m
) } ) )
97, 8mpteq12dv 4733 . . . 4  |-  ( j  =  b  ->  (
k  e.  ( ~P j  ^m  a ) 
|->  ( l  e.  j 
|->  { m  e.  a  |  l  e.  ( k `  m ) } ) )  =  ( k  e.  ( ~P b  ^m  a
)  |->  ( l  e.  b  |->  { m  e.  a  |  l  e.  ( k `  m
) } ) ) )
105, 9cbvmpt2v 6735 . . 3  |-  ( i  e.  _V ,  j  e.  _V  |->  ( k  e.  ( ~P j  ^m  i )  |->  ( l  e.  j  |->  { m  e.  i  |  l  e.  ( k `  m
) } ) ) )  =  ( a  e.  _V ,  b  e.  _V  |->  ( k  e.  ( ~P b  ^m  a )  |->  ( l  e.  b  |->  { m  e.  a  |  l  e.  ( k `  m
) } ) ) )
111, 10eqtri 2644 . 2  |-  O  =  ( a  e.  _V ,  b  e.  _V  |->  ( k  e.  ( ~P b  ^m  a
)  |->  ( l  e.  b  |->  { m  e.  a  |  l  e.  ( k `  m
) } ) ) )
12 ntrnei.r . 2  |-  ( ph  ->  I F N )
13 ntrnei.f . . 3  |-  F  =  ( ~P B O B )
1413a1i 11 . 2  |-  ( ph  ->  F  =  ( ~P B O B ) )
1511, 12, 14brovmptimex2 38327 1  |-  ( ph  ->  B  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    ^m cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-xp 5120  df-rel 5121  df-dm 5124  df-iota 5851  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  ntrneircomplex  38372  ntrneif1o  38373  ntrneicnv  38376  ntrneiel  38379  ntrneicls00  38387  ntrneik3  38394  ntrneix3  38395  ntrneik13  38396  ntrneix13  38397
  Copyright terms: Public domain W3C validator