Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneifv4 Structured version   Visualization version   Unicode version

Theorem ntrneifv4 38383
Description: The value of the interior (closure) expressed in terms of the neighbors (convergents) function. (Contributed by RP, 26-Jun-2021.)
Hypotheses
Ref Expression
ntrnei.o  |-  O  =  ( i  e.  _V ,  j  e.  _V  |->  ( k  e.  ( ~P j  ^m  i
)  |->  ( l  e.  j  |->  { m  e.  i  |  l  e.  ( k `  m
) } ) ) )
ntrnei.f  |-  F  =  ( ~P B O B )
ntrnei.r  |-  ( ph  ->  I F N )
ntrneifv.s  |-  ( ph  ->  S  e.  ~P B
)
Assertion
Ref Expression
ntrneifv4  |-  ( ph  ->  ( I `  S
)  =  { x  e.  B  |  S  e.  ( N `  x
) } )
Distinct variable groups:    B, i,
j, k, l, m, x    k, I, l, m, x    S, m, x    ph, i, j, k, l, x
Allowed substitution hints:    ph( m)    S( i, j, k, l)    F( x, i, j, k, m, l)    I( i, j)    N( x, i, j, k, m, l)    O( x, i, j, k, m, l)

Proof of Theorem ntrneifv4
StepHypRef Expression
1 dfin5 3582 . 2  |-  ( B  i^i  ( I `  S ) )  =  { x  e.  B  |  x  e.  (
I `  S ) }
2 ntrnei.o . . . . . . 7  |-  O  =  ( i  e.  _V ,  j  e.  _V  |->  ( k  e.  ( ~P j  ^m  i
)  |->  ( l  e.  j  |->  { m  e.  i  |  l  e.  ( k `  m
) } ) ) )
3 ntrnei.f . . . . . . 7  |-  F  =  ( ~P B O B )
4 ntrnei.r . . . . . . 7  |-  ( ph  ->  I F N )
52, 3, 4ntrneiiex 38374 . . . . . 6  |-  ( ph  ->  I  e.  ( ~P B  ^m  ~P B
) )
6 elmapi 7879 . . . . . 6  |-  ( I  e.  ( ~P B  ^m  ~P B )  ->  I : ~P B --> ~P B
)
75, 6syl 17 . . . . 5  |-  ( ph  ->  I : ~P B --> ~P B )
8 ntrneifv.s . . . . 5  |-  ( ph  ->  S  e.  ~P B
)
97, 8ffvelrnd 6360 . . . 4  |-  ( ph  ->  ( I `  S
)  e.  ~P B
)
109elpwid 4170 . . 3  |-  ( ph  ->  ( I `  S
)  C_  B )
11 sseqin2 3817 . . 3  |-  ( ( I `  S ) 
C_  B  <->  ( B  i^i  ( I `  S
) )  =  ( I `  S ) )
1210, 11sylib 208 . 2  |-  ( ph  ->  ( B  i^i  (
I `  S )
)  =  ( I `
 S ) )
134adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  I F N )
14 simpr 477 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  B )
158adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  S  e.  ~P B )
162, 3, 13, 14, 15ntrneiel 38379 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (
x  e.  ( I `
 S )  <->  S  e.  ( N `  x ) ) )
1716rabbidva 3188 . 2  |-  ( ph  ->  { x  e.  B  |  x  e.  (
I `  S ) }  =  { x  e.  B  |  S  e.  ( N `  x
) } )
181, 12, 173eqtr3a 2680 1  |-  ( ph  ->  ( I `  S
)  =  { x  e.  B  |  S  e.  ( N `  x
) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    ^m cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by:  ntrneiel2  38384
  Copyright terms: Public domain W3C validator