MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwlk1lem2f Structured version   Visualization version   Unicode version

Theorem numclwlk1lem2f 27225
Description:  T is a function, mapping a closed walk having a fixed length and starting at a fixed vertex) with the last but 2 vertex is identical with the first (and therefore last) vertex to the pair of the shorter closed walk and its successor in the longer closed walk, which must be a neighbor of the first vertex. (Contributed by Alexander van der Vekens, 19-Sep-2018.) (Revised by AV, 29-May-2021.)
Hypotheses
Ref Expression
extwwlkfab.v  |-  V  =  (Vtx `  G )
extwwlkfab.f  |-  F  =  ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n ClWWalksN  G )  |  ( w `  0 )  =  v } )
extwwlkfab.c  |-  C  =  ( v  e.  V ,  n  e.  ( ZZ>=
`  2 )  |->  { w  e.  ( n ClWWalksN  G )  |  ( ( w `  0
)  =  v  /\  ( w `  (
n  -  2 ) )  =  ( w `
 0 ) ) } )
numclwwlk.t  |-  T  =  ( u  e.  ( X C N ) 
|->  <. ( u substr  <. 0 ,  ( N  - 
2 ) >. ) ,  ( u `  ( N  -  1
) ) >. )
Assertion
Ref Expression
numclwlk1lem2f  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  T :
( X C N ) --> ( ( X F ( N  - 
2 ) )  X.  ( G NeighbVtx  X )
) )
Distinct variable groups:    n, G, u, v, w    n, N, u, v, w    n, V, v, w    n, X, u, v, w    w, F    u, C    u, F    u, V
Allowed substitution hints:    C( w, v, n)    T( w, v, u, n)    F( v, n)

Proof of Theorem numclwlk1lem2f
StepHypRef Expression
1 extwwlkfab.v . . . . . . 7  |-  V  =  (Vtx `  G )
2 extwwlkfab.f . . . . . . 7  |-  F  =  ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n ClWWalksN  G )  |  ( w `  0 )  =  v } )
3 extwwlkfab.c . . . . . . 7  |-  C  =  ( v  e.  V ,  n  e.  ( ZZ>=
`  2 )  |->  { w  e.  ( n ClWWalksN  G )  |  ( ( w `  0
)  =  v  /\  ( w `  (
n  -  2 ) )  =  ( w `
 0 ) ) } )
41, 2, 3extwwlkfab 27223 . . . . . 6  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( X C N )  =  {
w  e.  ( N ClWWalksN  G )  |  ( ( w substr  <. 0 ,  ( N  - 
2 ) >. )  e.  ( X F ( N  -  2 ) )  /\  ( w `
 ( N  - 
1 ) )  e.  ( G NeighbVtx  X )  /\  ( w `  ( N  -  2 ) )  =  X ) } )
54eleq2d 2687 . . . . 5  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( u  e.  ( X C N )  <->  u  e.  { w  e.  ( N ClWWalksN  G )  |  ( ( w substr  <. 0 ,  ( N  -  2 ) >.
)  e.  ( X F ( N  - 
2 ) )  /\  ( w `  ( N  -  1 ) )  e.  ( G NeighbVtx  X )  /\  (
w `  ( N  -  2 ) )  =  X ) } ) )
6 oveq1 6657 . . . . . . . 8  |-  ( w  =  u  ->  (
w substr  <. 0 ,  ( N  -  2 )
>. )  =  (
u substr  <. 0 ,  ( N  -  2 )
>. ) )
76eleq1d 2686 . . . . . . 7  |-  ( w  =  u  ->  (
( w substr  <. 0 ,  ( N  -  2 ) >. )  e.  ( X F ( N  -  2 ) )  <-> 
( u substr  <. 0 ,  ( N  -  2 ) >. )  e.  ( X F ( N  -  2 ) ) ) )
8 fveq1 6190 . . . . . . . 8  |-  ( w  =  u  ->  (
w `  ( N  -  1 ) )  =  ( u `  ( N  -  1
) ) )
98eleq1d 2686 . . . . . . 7  |-  ( w  =  u  ->  (
( w `  ( N  -  1 ) )  e.  ( G NeighbVtx  X )  <->  ( u `  ( N  -  1 ) )  e.  ( G NeighbVtx  X ) ) )
10 fveq1 6190 . . . . . . . 8  |-  ( w  =  u  ->  (
w `  ( N  -  2 ) )  =  ( u `  ( N  -  2
) ) )
1110eqeq1d 2624 . . . . . . 7  |-  ( w  =  u  ->  (
( w `  ( N  -  2 ) )  =  X  <->  ( u `  ( N  -  2 ) )  =  X ) )
127, 9, 113anbi123d 1399 . . . . . 6  |-  ( w  =  u  ->  (
( ( w substr  <. 0 ,  ( N  - 
2 ) >. )  e.  ( X F ( N  -  2 ) )  /\  ( w `
 ( N  - 
1 ) )  e.  ( G NeighbVtx  X )  /\  ( w `  ( N  -  2 ) )  =  X )  <-> 
( ( u substr  <. 0 ,  ( N  - 
2 ) >. )  e.  ( X F ( N  -  2 ) )  /\  ( u `
 ( N  - 
1 ) )  e.  ( G NeighbVtx  X )  /\  ( u `  ( N  -  2 ) )  =  X ) ) )
1312elrab 3363 . . . . 5  |-  ( u  e.  { w  e.  ( N ClWWalksN  G )  |  ( ( w substr  <. 0 ,  ( N  -  2 ) >.
)  e.  ( X F ( N  - 
2 ) )  /\  ( w `  ( N  -  1 ) )  e.  ( G NeighbVtx  X )  /\  (
w `  ( N  -  2 ) )  =  X ) }  <-> 
( u  e.  ( N ClWWalksN  G )  /\  (
( u substr  <. 0 ,  ( N  -  2 ) >. )  e.  ( X F ( N  -  2 ) )  /\  ( u `  ( N  -  1
) )  e.  ( G NeighbVtx  X )  /\  (
u `  ( N  -  2 ) )  =  X ) ) )
145, 13syl6bb 276 . . . 4  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( u  e.  ( X C N )  <->  ( u  e.  ( N ClWWalksN  G )  /\  ( ( u substr  <. 0 ,  ( N  - 
2 ) >. )  e.  ( X F ( N  -  2 ) )  /\  ( u `
 ( N  - 
1 ) )  e.  ( G NeighbVtx  X )  /\  ( u `  ( N  -  2 ) )  =  X ) ) ) )
15 simprr1 1109 . . . . . 6  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  ( u  e.  ( N ClWWalksN  G )  /\  ( ( u substr  <. 0 ,  ( N  - 
2 ) >. )  e.  ( X F ( N  -  2 ) )  /\  ( u `
 ( N  - 
1 ) )  e.  ( G NeighbVtx  X )  /\  ( u `  ( N  -  2 ) )  =  X ) ) )  ->  (
u substr  <. 0 ,  ( N  -  2 )
>. )  e.  ( X F ( N  - 
2 ) ) )
16 simprr2 1110 . . . . . 6  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  ( u  e.  ( N ClWWalksN  G )  /\  ( ( u substr  <. 0 ,  ( N  - 
2 ) >. )  e.  ( X F ( N  -  2 ) )  /\  ( u `
 ( N  - 
1 ) )  e.  ( G NeighbVtx  X )  /\  ( u `  ( N  -  2 ) )  =  X ) ) )  ->  (
u `  ( N  -  1 ) )  e.  ( G NeighbVtx  X ) )
1715, 16opelxpd 5149 . . . . 5  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  ( u  e.  ( N ClWWalksN  G )  /\  ( ( u substr  <. 0 ,  ( N  - 
2 ) >. )  e.  ( X F ( N  -  2 ) )  /\  ( u `
 ( N  - 
1 ) )  e.  ( G NeighbVtx  X )  /\  ( u `  ( N  -  2 ) )  =  X ) ) )  ->  <. (
u substr  <. 0 ,  ( N  -  2 )
>. ) ,  ( u `
 ( N  - 
1 ) ) >.  e.  ( ( X F ( N  -  2 ) )  X.  ( G NeighbVtx  X ) ) )
1817ex 450 . . . 4  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( (
u  e.  ( N ClWWalksN  G )  /\  (
( u substr  <. 0 ,  ( N  -  2 ) >. )  e.  ( X F ( N  -  2 ) )  /\  ( u `  ( N  -  1
) )  e.  ( G NeighbVtx  X )  /\  (
u `  ( N  -  2 ) )  =  X ) )  ->  <. ( u substr  <. 0 ,  ( N  - 
2 ) >. ) ,  ( u `  ( N  -  1
) ) >.  e.  ( ( X F ( N  -  2 ) )  X.  ( G NeighbVtx  X ) ) ) )
1914, 18sylbid 230 . . 3  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( u  e.  ( X C N )  ->  <. ( u substr  <. 0 ,  ( N  -  2 ) >.
) ,  ( u `
 ( N  - 
1 ) ) >.  e.  ( ( X F ( N  -  2 ) )  X.  ( G NeighbVtx  X ) ) ) )
2019imp 445 . 2  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  u  e.  ( X C N ) )  ->  <. ( u substr  <. 0 ,  ( N  -  2 ) >.
) ,  ( u `
 ( N  - 
1 ) ) >.  e.  ( ( X F ( N  -  2 ) )  X.  ( G NeighbVtx  X ) ) )
21 numclwwlk.t . 2  |-  T  =  ( u  e.  ( X C N ) 
|->  <. ( u substr  <. 0 ,  ( N  - 
2 ) >. ) ,  ( u `  ( N  -  1
) ) >. )
2220, 21fmptd 6385 1  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  T :
( X C N ) --> ( ( X F ( N  - 
2 ) )  X.  ( G NeighbVtx  X )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916   <.cop 4183    |-> cmpt 4729    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936   1c1 9937    - cmin 10266   NNcn 11020   2c2 11070   3c3 11071   ZZ>=cuz 11687   substr csubstr 13295  Vtxcvtx 25874   USGraph cusgr 26044   NeighbVtx cnbgr 26224   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-substr 13303  df-edg 25940  df-upgr 25977  df-umgr 25978  df-usgr 26046  df-nbgr 26228  df-wwlks 26722  df-wwlksn 26723  df-clwwlks 26877  df-clwwlksn 26878
This theorem is referenced by:  numclwlk1lem2f1  27227  numclwlk1lem2fo  27228
  Copyright terms: Public domain W3C validator