MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwlk1lem2f1 Structured version   Visualization version   Unicode version

Theorem numclwlk1lem2f1 27227
Description:  T is a 1-1 function. (Contributed by AV, 26-Sep-2018.) (Revised by AV, 29-May-2021.)
Hypotheses
Ref Expression
extwwlkfab.v  |-  V  =  (Vtx `  G )
extwwlkfab.f  |-  F  =  ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n ClWWalksN  G )  |  ( w `  0 )  =  v } )
extwwlkfab.c  |-  C  =  ( v  e.  V ,  n  e.  ( ZZ>=
`  2 )  |->  { w  e.  ( n ClWWalksN  G )  |  ( ( w `  0
)  =  v  /\  ( w `  (
n  -  2 ) )  =  ( w `
 0 ) ) } )
numclwwlk.t  |-  T  =  ( u  e.  ( X C N ) 
|->  <. ( u substr  <. 0 ,  ( N  - 
2 ) >. ) ,  ( u `  ( N  -  1
) ) >. )
Assertion
Ref Expression
numclwlk1lem2f1  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  T :
( X C N ) -1-1-> ( ( X F ( N  - 
2 ) )  X.  ( G NeighbVtx  X )
) )
Distinct variable groups:    n, G, u, v, w    n, N, u, v, w    n, V, v, w    n, X, u, v, w    w, F    u, C    u, F    u, V    u, T
Allowed substitution hints:    C( w, v, n)    T( w, v, n)    F( v, n)

Proof of Theorem numclwlk1lem2f1
Dummy variables  a  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 extwwlkfab.v . . 3  |-  V  =  (Vtx `  G )
2 extwwlkfab.f . . 3  |-  F  =  ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n ClWWalksN  G )  |  ( w `  0 )  =  v } )
3 extwwlkfab.c . . 3  |-  C  =  ( v  e.  V ,  n  e.  ( ZZ>=
`  2 )  |->  { w  e.  ( n ClWWalksN  G )  |  ( ( w `  0
)  =  v  /\  ( w `  (
n  -  2 ) )  =  ( w `
 0 ) ) } )
4 numclwwlk.t . . 3  |-  T  =  ( u  e.  ( X C N ) 
|->  <. ( u substr  <. 0 ,  ( N  - 
2 ) >. ) ,  ( u `  ( N  -  1
) ) >. )
51, 2, 3, 4numclwlk1lem2f 27225 . 2  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  T :
( X C N ) --> ( ( X F ( N  - 
2 ) )  X.  ( G NeighbVtx  X )
) )
61, 2, 3, 4numclwlk1lem2fv 27226 . . . . . 6  |-  ( p  e.  ( X C N )  ->  ( T `  p )  =  <. ( p substr  <. 0 ,  ( N  - 
2 ) >. ) ,  ( p `  ( N  -  1
) ) >. )
76ad2antrl 764 . . . . 5  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  ( p  e.  ( X C N )  /\  a  e.  ( X C N ) ) )  -> 
( T `  p
)  =  <. (
p substr  <. 0 ,  ( N  -  2 )
>. ) ,  ( p `
 ( N  - 
1 ) ) >.
)
81, 2, 3, 4numclwlk1lem2fv 27226 . . . . . 6  |-  ( a  e.  ( X C N )  ->  ( T `  a )  =  <. ( a substr  <. 0 ,  ( N  -  2 ) >.
) ,  ( a `
 ( N  - 
1 ) ) >.
)
98ad2antll 765 . . . . 5  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  ( p  e.  ( X C N )  /\  a  e.  ( X C N ) ) )  -> 
( T `  a
)  =  <. (
a substr  <. 0 ,  ( N  -  2 )
>. ) ,  ( a `
 ( N  - 
1 ) ) >.
)
107, 9eqeq12d 2637 . . . 4  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  ( p  e.  ( X C N )  /\  a  e.  ( X C N ) ) )  -> 
( ( T `  p )  =  ( T `  a )  <->  <. ( p substr  <. 0 ,  ( N  - 
2 ) >. ) ,  ( p `  ( N  -  1
) ) >.  =  <. ( a substr  <. 0 ,  ( N  -  2 )
>. ) ,  ( a `
 ( N  - 
1 ) ) >.
) )
11 ovex 6678 . . . . . 6  |-  ( p substr  <. 0 ,  ( N  -  2 ) >.
)  e.  _V
12 fvex 6201 . . . . . 6  |-  ( p `
 ( N  - 
1 ) )  e. 
_V
1311, 12opth 4945 . . . . 5  |-  ( <.
( p substr  <. 0 ,  ( N  -  2 ) >. ) ,  ( p `  ( N  -  1 ) )
>.  =  <. ( a substr  <. 0 ,  ( N  -  2 ) >.
) ,  ( a `
 ( N  - 
1 ) ) >.  <->  ( ( p substr  <. 0 ,  ( N  - 
2 ) >. )  =  ( a substr  <. 0 ,  ( N  -  2 ) >.
)  /\  ( p `  ( N  -  1 ) )  =  ( a `  ( N  -  1 ) ) ) )
14 uzuzle23 11729 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  3
)  ->  N  e.  ( ZZ>= `  2 )
)
153numclwwlkovgel 27221 . . . . . . . . . 10  |-  ( ( X  e.  V  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( p  e.  ( X C N )  <-> 
( p  e.  ( N ClWWalksN  G )  /\  (
p `  0 )  =  X  /\  (
p `  ( N  -  2 ) )  =  ( p ` 
0 ) ) ) )
1614, 15sylan2 491 . . . . . . . . 9  |-  ( ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  -> 
( p  e.  ( X C N )  <-> 
( p  e.  ( N ClWWalksN  G )  /\  (
p `  0 )  =  X  /\  (
p `  ( N  -  2 ) )  =  ( p ` 
0 ) ) ) )
171clwwlknbp 26885 . . . . . . . . . . 11  |-  ( p  e.  ( N ClWWalksN  G )  ->  ( p  e. Word  V  /\  ( # `  p
)  =  N ) )
18173ad2ant1 1082 . . . . . . . . . 10  |-  ( ( p  e.  ( N ClWWalksN  G )  /\  (
p `  0 )  =  X  /\  (
p `  ( N  -  2 ) )  =  ( p ` 
0 ) )  -> 
( p  e. Word  V  /\  ( # `  p
)  =  N ) )
19 3simpc 1060 . . . . . . . . . 10  |-  ( ( p  e.  ( N ClWWalksN  G )  /\  (
p `  0 )  =  X  /\  (
p `  ( N  -  2 ) )  =  ( p ` 
0 ) )  -> 
( ( p ` 
0 )  =  X  /\  ( p `  ( N  -  2
) )  =  ( p `  0 ) ) )
2018, 19jca 554 . . . . . . . . 9  |-  ( ( p  e.  ( N ClWWalksN  G )  /\  (
p `  0 )  =  X  /\  (
p `  ( N  -  2 ) )  =  ( p ` 
0 ) )  -> 
( ( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) ) )
2116, 20syl6bi 243 . . . . . . . 8  |-  ( ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  -> 
( p  e.  ( X C N )  ->  ( ( p  e. Word  V  /\  ( # `
 p )  =  N )  /\  (
( p `  0
)  =  X  /\  ( p `  ( N  -  2 ) )  =  ( p `
 0 ) ) ) ) )
22213adant1 1079 . . . . . . 7  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( p  e.  ( X C N )  ->  ( (
p  e. Word  V  /\  ( # `  p )  =  N )  /\  ( ( p ` 
0 )  =  X  /\  ( p `  ( N  -  2
) )  =  ( p `  0 ) ) ) ) )
233numclwwlkovgel 27221 . . . . . . . . . 10  |-  ( ( X  e.  V  /\  N  e.  ( ZZ>= ` 
2 ) )  -> 
( a  e.  ( X C N )  <-> 
( a  e.  ( N ClWWalksN  G )  /\  (
a `  0 )  =  X  /\  (
a `  ( N  -  2 ) )  =  ( a ` 
0 ) ) ) )
2414, 23sylan2 491 . . . . . . . . 9  |-  ( ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  -> 
( a  e.  ( X C N )  <-> 
( a  e.  ( N ClWWalksN  G )  /\  (
a `  0 )  =  X  /\  (
a `  ( N  -  2 ) )  =  ( a ` 
0 ) ) ) )
251clwwlknbp 26885 . . . . . . . . . . 11  |-  ( a  e.  ( N ClWWalksN  G )  ->  ( a  e. Word  V  /\  ( # `  a
)  =  N ) )
26253ad2ant1 1082 . . . . . . . . . 10  |-  ( ( a  e.  ( N ClWWalksN  G )  /\  (
a `  0 )  =  X  /\  (
a `  ( N  -  2 ) )  =  ( a ` 
0 ) )  -> 
( a  e. Word  V  /\  ( # `  a
)  =  N ) )
27 3simpc 1060 . . . . . . . . . 10  |-  ( ( a  e.  ( N ClWWalksN  G )  /\  (
a `  0 )  =  X  /\  (
a `  ( N  -  2 ) )  =  ( a ` 
0 ) )  -> 
( ( a ` 
0 )  =  X  /\  ( a `  ( N  -  2
) )  =  ( a `  0 ) ) )
2826, 27jca 554 . . . . . . . . 9  |-  ( ( a  e.  ( N ClWWalksN  G )  /\  (
a `  0 )  =  X  /\  (
a `  ( N  -  2 ) )  =  ( a ` 
0 ) )  -> 
( ( a  e. Word  V  /\  ( # `  a
)  =  N )  /\  ( ( a `
 0 )  =  X  /\  ( a `
 ( N  - 
2 ) )  =  ( a `  0
) ) ) )
2924, 28syl6bi 243 . . . . . . . 8  |-  ( ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  -> 
( a  e.  ( X C N )  ->  ( ( a  e. Word  V  /\  ( # `
 a )  =  N )  /\  (
( a `  0
)  =  X  /\  ( a `  ( N  -  2 ) )  =  ( a `
 0 ) ) ) ) )
30293adant1 1079 . . . . . . 7  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( a  e.  ( X C N )  ->  ( (
a  e. Word  V  /\  ( # `  a )  =  N )  /\  ( ( a ` 
0 )  =  X  /\  ( a `  ( N  -  2
) )  =  ( a `  0 ) ) ) ) )
31 simpll 790 . . . . . . . . . . 11  |-  ( ( ( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  ->  p  e. Word  V )
3231ad2antrl 764 . . . . . . . . . 10  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  ( (
( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( a  e. Word  V  /\  ( # `  a
)  =  N )  /\  ( ( a `
 0 )  =  X  /\  ( a `
 ( N  - 
2 ) )  =  ( a `  0
) ) ) ) )  ->  p  e. Word  V )
33 simprll 802 . . . . . . . . . . 11  |-  ( ( ( ( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( a  e. Word  V  /\  ( # `  a
)  =  N )  /\  ( ( a `
 0 )  =  X  /\  ( a `
 ( N  - 
2 ) )  =  ( a `  0
) ) ) )  ->  a  e. Word  V
)
3433adantl 482 . . . . . . . . . 10  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  ( (
( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( a  e. Word  V  /\  ( # `  a
)  =  N )  /\  ( ( a `
 0 )  =  X  /\  ( a `
 ( N  - 
2 ) )  =  ( a `  0
) ) ) ) )  ->  a  e. Word  V )
35 eleq1 2689 . . . . . . . . . . . . . . . . 17  |-  ( N  =  ( # `  p
)  ->  ( N  e.  ( ZZ>= `  3 )  <->  (
# `  p )  e.  ( ZZ>= `  3 )
) )
3635eqcoms 2630 . . . . . . . . . . . . . . . 16  |-  ( (
# `  p )  =  N  ->  ( N  e.  ( ZZ>= `  3
)  <->  ( # `  p
)  e.  ( ZZ>= ` 
3 ) ) )
37 eluz2 11693 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  p )  e.  ( ZZ>= `  3 )  <->  ( 3  e.  ZZ  /\  ( # `  p )  e.  ZZ  /\  3  <_  ( # `  p
) ) )
38 1red 10055 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
# `  p )  e.  ZZ  ->  1  e.  RR )
39 3re 11094 . . . . . . . . . . . . . . . . . . . . . 22  |-  3  e.  RR
4039a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
# `  p )  e.  ZZ  ->  3  e.  RR )
41 zre 11381 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
# `  p )  e.  ZZ  ->  ( # `  p
)  e.  RR )
4238, 40, 413jca 1242 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
# `  p )  e.  ZZ  ->  ( 1  e.  RR  /\  3  e.  RR  /\  ( # `  p )  e.  RR ) )
43 1lt3 11196 . . . . . . . . . . . . . . . . . . . 20  |-  1  <  3
44 ltletr 10129 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1  e.  RR  /\  3  e.  RR  /\  ( # `
 p )  e.  RR )  ->  (
( 1  <  3  /\  3  <_  ( # `  p ) )  -> 
1  <  ( # `  p
) ) )
4544expd 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1  e.  RR  /\  3  e.  RR  /\  ( # `
 p )  e.  RR )  ->  (
1  <  3  ->  ( 3  <_  ( # `  p
)  ->  1  <  (
# `  p )
) ) )
4642, 43, 45mpisyl 21 . . . . . . . . . . . . . . . . . . 19  |-  ( (
# `  p )  e.  ZZ  ->  ( 3  <_  ( # `  p
)  ->  1  <  (
# `  p )
) )
4746imp 445 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( # `  p
)  e.  ZZ  /\  3  <_  ( # `  p
) )  ->  1  <  ( # `  p
) )
48473adant1 1079 . . . . . . . . . . . . . . . . 17  |-  ( ( 3  e.  ZZ  /\  ( # `  p )  e.  ZZ  /\  3  <_  ( # `  p
) )  ->  1  <  ( # `  p
) )
4937, 48sylbi 207 . . . . . . . . . . . . . . . 16  |-  ( (
# `  p )  e.  ( ZZ>= `  3 )  ->  1  <  ( # `  p ) )
5036, 49syl6bi 243 . . . . . . . . . . . . . . 15  |-  ( (
# `  p )  =  N  ->  ( N  e.  ( ZZ>= `  3
)  ->  1  <  (
# `  p )
) )
5150com12 32 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  3
)  ->  ( ( # `
 p )  =  N  ->  1  <  (
# `  p )
) )
52513ad2ant3 1084 . . . . . . . . . . . . 13  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( ( # `
 p )  =  N  ->  1  <  (
# `  p )
) )
5352com12 32 . . . . . . . . . . . 12  |-  ( (
# `  p )  =  N  ->  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  1  <  (
# `  p )
) )
5453ad3antlr 767 . . . . . . . . . . 11  |-  ( ( ( ( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( a  e. Word  V  /\  ( # `  a
)  =  N )  /\  ( ( a `
 0 )  =  X  /\  ( a `
 ( N  - 
2 ) )  =  ( a `  0
) ) ) )  ->  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>=
`  3 ) )  ->  1  <  ( # `
 p ) ) )
5554impcom 446 . . . . . . . . . 10  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  ( (
( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( a  e. Word  V  /\  ( # `  a
)  =  N )  /\  ( ( a `
 0 )  =  X  /\  ( a `
 ( N  - 
2 ) )  =  ( a `  0
) ) ) ) )  ->  1  <  (
# `  p )
)
56 2swrd2eqwrdeq 13696 . . . . . . . . . 10  |-  ( ( p  e. Word  V  /\  a  e. Word  V  /\  1  <  ( # `  p
) )  ->  (
p  =  a  <->  ( ( # `
 p )  =  ( # `  a
)  /\  ( (
p substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  =  (
a substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  /\  (
p `  ( ( # `
 p )  - 
2 ) )  =  ( a `  (
( # `  p )  -  2 ) )  /\  ( lastS  `  p
)  =  ( lastS  `  a
) ) ) ) )
5732, 34, 55, 56syl3anc 1326 . . . . . . . . 9  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  ( (
( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( a  e. Word  V  /\  ( # `  a
)  =  N )  /\  ( ( a `
 0 )  =  X  /\  ( a `
 ( N  - 
2 ) )  =  ( a `  0
) ) ) ) )  ->  ( p  =  a  <->  ( ( # `  p )  =  (
# `  a )  /\  ( ( p substr  <. 0 ,  ( ( # `  p )  -  2 ) >. )  =  ( a substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  /\  (
p `  ( ( # `
 p )  - 
2 ) )  =  ( a `  (
( # `  p )  -  2 ) )  /\  ( lastS  `  p
)  =  ( lastS  `  a
) ) ) ) )
58 eqtr3 2643 . . . . . . . . . . . . . . . 16  |-  ( ( ( # `  p
)  =  N  /\  ( # `  a )  =  N )  -> 
( # `  p )  =  ( # `  a
) )
5958expcom 451 . . . . . . . . . . . . . . 15  |-  ( (
# `  a )  =  N  ->  ( (
# `  p )  =  N  ->  ( # `  p )  =  (
# `  a )
) )
6059ad2antlr 763 . . . . . . . . . . . . . 14  |-  ( ( ( a  e. Word  V  /\  ( # `  a
)  =  N )  /\  ( ( a `
 0 )  =  X  /\  ( a `
 ( N  - 
2 ) )  =  ( a `  0
) ) )  -> 
( ( # `  p
)  =  N  -> 
( # `  p )  =  ( # `  a
) ) )
6160com12 32 . . . . . . . . . . . . 13  |-  ( (
# `  p )  =  N  ->  ( ( ( a  e. Word  V  /\  ( # `  a
)  =  N )  /\  ( ( a `
 0 )  =  X  /\  ( a `
 ( N  - 
2 ) )  =  ( a `  0
) ) )  -> 
( # `  p )  =  ( # `  a
) ) )
6261ad2antlr 763 . . . . . . . . . . . 12  |-  ( ( ( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  -> 
( ( ( a  e. Word  V  /\  ( # `
 a )  =  N )  /\  (
( a `  0
)  =  X  /\  ( a `  ( N  -  2 ) )  =  ( a `
 0 ) ) )  ->  ( # `  p
)  =  ( # `  a ) ) )
6362imp 445 . . . . . . . . . . 11  |-  ( ( ( ( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( a  e. Word  V  /\  ( # `  a
)  =  N )  /\  ( ( a `
 0 )  =  X  /\  ( a `
 ( N  - 
2 ) )  =  ( a `  0
) ) ) )  ->  ( # `  p
)  =  ( # `  a ) )
6463adantl 482 . . . . . . . . . 10  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  ( (
( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( a  e. Word  V  /\  ( # `  a
)  =  N )  /\  ( ( a `
 0 )  =  X  /\  ( a `
 ( N  - 
2 ) )  =  ( a `  0
) ) ) ) )  ->  ( # `  p
)  =  ( # `  a ) )
6564biantrurd 529 . . . . . . . . 9  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  ( (
( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( a  e. Word  V  /\  ( # `  a
)  =  N )  /\  ( ( a `
 0 )  =  X  /\  ( a `
 ( N  - 
2 ) )  =  ( a `  0
) ) ) ) )  ->  ( (
( p substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  =  (
a substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  /\  (
p `  ( ( # `
 p )  - 
2 ) )  =  ( a `  (
( # `  p )  -  2 ) )  /\  ( lastS  `  p
)  =  ( lastS  `  a
) )  <->  ( ( # `
 p )  =  ( # `  a
)  /\  ( (
p substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  =  (
a substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  /\  (
p `  ( ( # `
 p )  - 
2 ) )  =  ( a `  (
( # `  p )  -  2 ) )  /\  ( lastS  `  p
)  =  ( lastS  `  a
) ) ) ) )
66 3anan12 1051 . . . . . . . . . . 11  |-  ( ( ( p substr  <. 0 ,  ( ( # `  p )  -  2 ) >. )  =  ( a substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  /\  (
p `  ( ( # `
 p )  - 
2 ) )  =  ( a `  (
( # `  p )  -  2 ) )  /\  ( lastS  `  p
)  =  ( lastS  `  a
) )  <->  ( (
p `  ( ( # `
 p )  - 
2 ) )  =  ( a `  (
( # `  p )  -  2 ) )  /\  ( ( p substr  <. 0 ,  ( (
# `  p )  -  2 ) >.
)  =  ( a substr  <. 0 ,  ( (
# `  p )  -  2 ) >.
)  /\  ( lastS  `  p
)  =  ( lastS  `  a
) ) ) )
6766a1i 11 . . . . . . . . . 10  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  ( (
( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( a  e. Word  V  /\  ( # `  a
)  =  N )  /\  ( ( a `
 0 )  =  X  /\  ( a `
 ( N  - 
2 ) )  =  ( a `  0
) ) ) ) )  ->  ( (
( p substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  =  (
a substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  /\  (
p `  ( ( # `
 p )  - 
2 ) )  =  ( a `  (
( # `  p )  -  2 ) )  /\  ( lastS  `  p
)  =  ( lastS  `  a
) )  <->  ( (
p `  ( ( # `
 p )  - 
2 ) )  =  ( a `  (
( # `  p )  -  2 ) )  /\  ( ( p substr  <. 0 ,  ( (
# `  p )  -  2 ) >.
)  =  ( a substr  <. 0 ,  ( (
# `  p )  -  2 ) >.
)  /\  ( lastS  `  p
)  =  ( lastS  `  a
) ) ) ) )
68 eqeq2 2633 . . . . . . . . . . . . . . . . . . 19  |-  ( ( p `  0 )  =  X  ->  (
( p `  ( N  -  2 ) )  =  ( p `
 0 )  <->  ( p `  ( N  -  2 ) )  =  X ) )
69 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( N  =  ( # `  p
)  ->  ( N  -  2 )  =  ( ( # `  p
)  -  2 ) )
7069eqcoms 2630 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
# `  p )  =  N  ->  ( N  -  2 )  =  ( ( # `  p
)  -  2 ) )
7170fveq2d 6195 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
# `  p )  =  N  ->  ( p `
 ( N  - 
2 ) )  =  ( p `  (
( # `  p )  -  2 ) ) )
7271eqeq1d 2624 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
# `  p )  =  N  ->  ( ( p `  ( N  -  2 ) )  =  X  <->  ( p `  ( ( # `  p
)  -  2 ) )  =  X ) )
7372biimpcd 239 . . . . . . . . . . . . . . . . . . 19  |-  ( ( p `  ( N  -  2 ) )  =  X  ->  (
( # `  p )  =  N  ->  (
p `  ( ( # `
 p )  - 
2 ) )  =  X ) )
7468, 73syl6bi 243 . . . . . . . . . . . . . . . . . 18  |-  ( ( p `  0 )  =  X  ->  (
( p `  ( N  -  2 ) )  =  ( p `
 0 )  -> 
( ( # `  p
)  =  N  -> 
( p `  (
( # `  p )  -  2 ) )  =  X ) ) )
7574imp 445 . . . . . . . . . . . . . . . . 17  |-  ( ( ( p `  0
)  =  X  /\  ( p `  ( N  -  2 ) )  =  ( p `
 0 ) )  ->  ( ( # `  p )  =  N  ->  ( p `  ( ( # `  p
)  -  2 ) )  =  X ) )
7675com12 32 . . . . . . . . . . . . . . . 16  |-  ( (
# `  p )  =  N  ->  ( ( ( p `  0
)  =  X  /\  ( p `  ( N  -  2 ) )  =  ( p `
 0 ) )  ->  ( p `  ( ( # `  p
)  -  2 ) )  =  X ) )
7776adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( p  e. Word  V  /\  ( # `  p )  =  N )  -> 
( ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) )  ->  (
p `  ( ( # `
 p )  - 
2 ) )  =  X ) )
7877imp 445 . . . . . . . . . . . . . 14  |-  ( ( ( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  -> 
( p `  (
( # `  p )  -  2 ) )  =  X )
7978adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( a  e. Word  V  /\  ( # `  a
)  =  N )  /\  ( ( a `
 0 )  =  X  /\  ( a `
 ( N  - 
2 ) )  =  ( a `  0
) ) ) )  ->  ( p `  ( ( # `  p
)  -  2 ) )  =  X )
80 oveq1 6657 . . . . . . . . . . . . . . . 16  |-  ( (
# `  p )  =  N  ->  ( (
# `  p )  -  2 )  =  ( N  -  2 ) )
8180fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( (
# `  p )  =  N  ->  ( a `
 ( ( # `  p )  -  2 ) )  =  ( a `  ( N  -  2 ) ) )
82 eqeq1 2626 . . . . . . . . . . . . . . . . . 18  |-  ( ( a `  0 )  =  ( a `  ( N  -  2
) )  ->  (
( a `  0
)  =  X  <->  ( a `  ( N  -  2 ) )  =  X ) )
8382eqcoms 2630 . . . . . . . . . . . . . . . . 17  |-  ( ( a `  ( N  -  2 ) )  =  ( a ` 
0 )  ->  (
( a `  0
)  =  X  <->  ( a `  ( N  -  2 ) )  =  X ) )
8483biimpac 503 . . . . . . . . . . . . . . . 16  |-  ( ( ( a `  0
)  =  X  /\  ( a `  ( N  -  2 ) )  =  ( a `
 0 ) )  ->  ( a `  ( N  -  2
) )  =  X )
8584adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( ( a  e. Word  V  /\  ( # `  a
)  =  N )  /\  ( ( a `
 0 )  =  X  /\  ( a `
 ( N  - 
2 ) )  =  ( a `  0
) ) )  -> 
( a `  ( N  -  2 ) )  =  X )
8681, 85sylan9eq 2676 . . . . . . . . . . . . . 14  |-  ( ( ( # `  p
)  =  N  /\  ( ( a  e. Word  V  /\  ( # `  a
)  =  N )  /\  ( ( a `
 0 )  =  X  /\  ( a `
 ( N  - 
2 ) )  =  ( a `  0
) ) ) )  ->  ( a `  ( ( # `  p
)  -  2 ) )  =  X )
8786ad4ant24 1298 . . . . . . . . . . . . 13  |-  ( ( ( ( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( a  e. Word  V  /\  ( # `  a
)  =  N )  /\  ( ( a `
 0 )  =  X  /\  ( a `
 ( N  - 
2 ) )  =  ( a `  0
) ) ) )  ->  ( a `  ( ( # `  p
)  -  2 ) )  =  X )
8879, 87eqtr4d 2659 . . . . . . . . . . . 12  |-  ( ( ( ( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( a  e. Word  V  /\  ( # `  a
)  =  N )  /\  ( ( a `
 0 )  =  X  /\  ( a `
 ( N  - 
2 ) )  =  ( a `  0
) ) ) )  ->  ( p `  ( ( # `  p
)  -  2 ) )  =  ( a `
 ( ( # `  p )  -  2 ) ) )
8988adantl 482 . . . . . . . . . . 11  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  ( (
( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( a  e. Word  V  /\  ( # `  a
)  =  N )  /\  ( ( a `
 0 )  =  X  /\  ( a `
 ( N  - 
2 ) )  =  ( a `  0
) ) ) ) )  ->  ( p `  ( ( # `  p
)  -  2 ) )  =  ( a `
 ( ( # `  p )  -  2 ) ) )
9089biantrurd 529 . . . . . . . . . 10  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  ( (
( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( a  e. Word  V  /\  ( # `  a
)  =  N )  /\  ( ( a `
 0 )  =  X  /\  ( a `
 ( N  - 
2 ) )  =  ( a `  0
) ) ) ) )  ->  ( (
( p substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  =  (
a substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  /\  ( lastS  `  p )  =  ( lastS  `  a ) )  <->  ( (
p `  ( ( # `
 p )  - 
2 ) )  =  ( a `  (
( # `  p )  -  2 ) )  /\  ( ( p substr  <. 0 ,  ( (
# `  p )  -  2 ) >.
)  =  ( a substr  <. 0 ,  ( (
# `  p )  -  2 ) >.
)  /\  ( lastS  `  p
)  =  ( lastS  `  a
) ) ) ) )
9180opeq2d 4409 . . . . . . . . . . . . . . 15  |-  ( (
# `  p )  =  N  ->  <. 0 ,  ( ( # `  p )  -  2 ) >.  =  <. 0 ,  ( N  -  2 ) >.
)
9291oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( (
# `  p )  =  N  ->  ( p substr  <. 0 ,  ( (
# `  p )  -  2 ) >.
)  =  ( p substr  <. 0 ,  ( N  -  2 ) >.
) )
9391oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( (
# `  p )  =  N  ->  ( a substr  <. 0 ,  ( (
# `  p )  -  2 ) >.
)  =  ( a substr  <. 0 ,  ( N  -  2 ) >.
) )
9492, 93eqeq12d 2637 . . . . . . . . . . . . 13  |-  ( (
# `  p )  =  N  ->  ( ( p substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  =  (
a substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  <->  ( p substr  <. 0 ,  ( N  - 
2 ) >. )  =  ( a substr  <. 0 ,  ( N  -  2 ) >.
) ) )
9594ad3antlr 767 . . . . . . . . . . . 12  |-  ( ( ( ( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( a  e. Word  V  /\  ( # `  a
)  =  N )  /\  ( ( a `
 0 )  =  X  /\  ( a `
 ( N  - 
2 ) )  =  ( a `  0
) ) ) )  ->  ( ( p substr  <. 0 ,  ( (
# `  p )  -  2 ) >.
)  =  ( a substr  <. 0 ,  ( (
# `  p )  -  2 ) >.
)  <->  ( p substr  <. 0 ,  ( N  - 
2 ) >. )  =  ( a substr  <. 0 ,  ( N  -  2 ) >.
) ) )
9695adantl 482 . . . . . . . . . . 11  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  ( (
( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( a  e. Word  V  /\  ( # `  a
)  =  N )  /\  ( ( a `
 0 )  =  X  /\  ( a `
 ( N  - 
2 ) )  =  ( a `  0
) ) ) ) )  ->  ( (
p substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  =  (
a substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  <->  ( p substr  <. 0 ,  ( N  - 
2 ) >. )  =  ( a substr  <. 0 ,  ( N  -  2 ) >.
) ) )
97 lsw 13351 . . . . . . . . . . . . . . 15  |-  ( p  e. Word  V  ->  ( lastS  `  p )  =  ( p `  ( (
# `  p )  -  1 ) ) )
98 oveq1 6657 . . . . . . . . . . . . . . . 16  |-  ( (
# `  p )  =  N  ->  ( (
# `  p )  -  1 )  =  ( N  -  1 ) )
9998fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( (
# `  p )  =  N  ->  ( p `
 ( ( # `  p )  -  1 ) )  =  ( p `  ( N  -  1 ) ) )
10097, 99sylan9eq 2676 . . . . . . . . . . . . . 14  |-  ( ( p  e. Word  V  /\  ( # `  p )  =  N )  -> 
( lastS  `  p )  =  ( p `  ( N  -  1 ) ) )
101100adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  -> 
( lastS  `  p )  =  ( p `  ( N  -  1 ) ) )
102 lsw 13351 . . . . . . . . . . . . . . . 16  |-  ( a  e. Word  V  ->  ( lastS  `  a )  =  ( a `  ( (
# `  a )  -  1 ) ) )
103102adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( a  e. Word  V  /\  ( # `  a )  =  N )  -> 
( lastS  `  a )  =  ( a `  (
( # `  a )  -  1 ) ) )
104 oveq1 6657 . . . . . . . . . . . . . . . . . . 19  |-  ( N  =  ( # `  a
)  ->  ( N  -  1 )  =  ( ( # `  a
)  -  1 ) )
105104eqcoms 2630 . . . . . . . . . . . . . . . . . 18  |-  ( (
# `  a )  =  N  ->  ( N  -  1 )  =  ( ( # `  a
)  -  1 ) )
106105fveq2d 6195 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  a )  =  N  ->  ( a `
 ( N  - 
1 ) )  =  ( a `  (
( # `  a )  -  1 ) ) )
107106eqeq2d 2632 . . . . . . . . . . . . . . . 16  |-  ( (
# `  a )  =  N  ->  ( ( lastS  `  a )  =  ( a `  ( N  -  1 ) )  <-> 
( lastS  `  a )  =  ( a `  (
( # `  a )  -  1 ) ) ) )
108107adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( a  e. Word  V  /\  ( # `  a )  =  N )  -> 
( ( lastS  `  a
)  =  ( a `
 ( N  - 
1 ) )  <->  ( lastS  `  a
)  =  ( a `
 ( ( # `  a )  -  1 ) ) ) )
109103, 108mpbird 247 . . . . . . . . . . . . . 14  |-  ( ( a  e. Word  V  /\  ( # `  a )  =  N )  -> 
( lastS  `  a )  =  ( a `  ( N  -  1 ) ) )
110109adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( a  e. Word  V  /\  ( # `  a
)  =  N )  /\  ( ( a `
 0 )  =  X  /\  ( a `
 ( N  - 
2 ) )  =  ( a `  0
) ) )  -> 
( lastS  `  a )  =  ( a `  ( N  -  1 ) ) )
111101, 110eqeqan12d 2638 . . . . . . . . . . . 12  |-  ( ( ( ( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( a  e. Word  V  /\  ( # `  a
)  =  N )  /\  ( ( a `
 0 )  =  X  /\  ( a `
 ( N  - 
2 ) )  =  ( a `  0
) ) ) )  ->  ( ( lastS  `  p
)  =  ( lastS  `  a
)  <->  ( p `  ( N  -  1
) )  =  ( a `  ( N  -  1 ) ) ) )
112111adantl 482 . . . . . . . . . . 11  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  ( (
( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( a  e. Word  V  /\  ( # `  a
)  =  N )  /\  ( ( a `
 0 )  =  X  /\  ( a `
 ( N  - 
2 ) )  =  ( a `  0
) ) ) ) )  ->  ( ( lastS  `  p )  =  ( lastS  `  a )  <->  ( p `  ( N  -  1 ) )  =  ( a `  ( N  -  1 ) ) ) )
11396, 112anbi12d 747 . . . . . . . . . 10  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  ( (
( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( a  e. Word  V  /\  ( # `  a
)  =  N )  /\  ( ( a `
 0 )  =  X  /\  ( a `
 ( N  - 
2 ) )  =  ( a `  0
) ) ) ) )  ->  ( (
( p substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  =  (
a substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  /\  ( lastS  `  p )  =  ( lastS  `  a ) )  <->  ( (
p substr  <. 0 ,  ( N  -  2 )
>. )  =  (
a substr  <. 0 ,  ( N  -  2 )
>. )  /\  (
p `  ( N  -  1 ) )  =  ( a `  ( N  -  1
) ) ) ) )
11467, 90, 1133bitr2d 296 . . . . . . . . 9  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  ( (
( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( a  e. Word  V  /\  ( # `  a
)  =  N )  /\  ( ( a `
 0 )  =  X  /\  ( a `
 ( N  - 
2 ) )  =  ( a `  0
) ) ) ) )  ->  ( (
( p substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  =  (
a substr  <. 0 ,  ( ( # `  p
)  -  2 )
>. )  /\  (
p `  ( ( # `
 p )  - 
2 ) )  =  ( a `  (
( # `  p )  -  2 ) )  /\  ( lastS  `  p
)  =  ( lastS  `  a
) )  <->  ( (
p substr  <. 0 ,  ( N  -  2 )
>. )  =  (
a substr  <. 0 ,  ( N  -  2 )
>. )  /\  (
p `  ( N  -  1 ) )  =  ( a `  ( N  -  1
) ) ) ) )
11557, 65, 1143bitr2d 296 . . . . . . . 8  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  ( (
( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( a  e. Word  V  /\  ( # `  a
)  =  N )  /\  ( ( a `
 0 )  =  X  /\  ( a `
 ( N  - 
2 ) )  =  ( a `  0
) ) ) ) )  ->  ( p  =  a  <->  ( ( p substr  <. 0 ,  ( N  -  2 ) >.
)  =  ( a substr  <. 0 ,  ( N  -  2 ) >.
)  /\  ( p `  ( N  -  1 ) )  =  ( a `  ( N  -  1 ) ) ) ) )
116115exbiri 652 . . . . . . 7  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( (
( ( p  e. Word  V  /\  ( # `  p
)  =  N )  /\  ( ( p `
 0 )  =  X  /\  ( p `
 ( N  - 
2 ) )  =  ( p `  0
) ) )  /\  ( ( a  e. Word  V  /\  ( # `  a
)  =  N )  /\  ( ( a `
 0 )  =  X  /\  ( a `
 ( N  - 
2 ) )  =  ( a `  0
) ) ) )  ->  ( ( ( p substr  <. 0 ,  ( N  -  2 )
>. )  =  (
a substr  <. 0 ,  ( N  -  2 )
>. )  /\  (
p `  ( N  -  1 ) )  =  ( a `  ( N  -  1
) ) )  ->  p  =  a )
) )
11722, 30, 116syl2and 500 . . . . . 6  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( (
p  e.  ( X C N )  /\  a  e.  ( X C N ) )  -> 
( ( ( p substr  <. 0 ,  ( N  -  2 ) >.
)  =  ( a substr  <. 0 ,  ( N  -  2 ) >.
)  /\  ( p `  ( N  -  1 ) )  =  ( a `  ( N  -  1 ) ) )  ->  p  =  a ) ) )
118117imp 445 . . . . 5  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  ( p  e.  ( X C N )  /\  a  e.  ( X C N ) ) )  -> 
( ( ( p substr  <. 0 ,  ( N  -  2 ) >.
)  =  ( a substr  <. 0 ,  ( N  -  2 ) >.
)  /\  ( p `  ( N  -  1 ) )  =  ( a `  ( N  -  1 ) ) )  ->  p  =  a ) )
11913, 118syl5bi 232 . . . 4  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  ( p  e.  ( X C N )  /\  a  e.  ( X C N ) ) )  -> 
( <. ( p substr  <. 0 ,  ( N  - 
2 ) >. ) ,  ( p `  ( N  -  1
) ) >.  =  <. ( a substr  <. 0 ,  ( N  -  2 )
>. ) ,  ( a `
 ( N  - 
1 ) ) >.  ->  p  =  a ) )
12010, 119sylbid 230 . . 3  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  ( p  e.  ( X C N )  /\  a  e.  ( X C N ) ) )  -> 
( ( T `  p )  =  ( T `  a )  ->  p  =  a ) )
121120ralrimivva 2971 . 2  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  A. p  e.  ( X C N ) A. a  e.  ( X C N ) ( ( T `
 p )  =  ( T `  a
)  ->  p  =  a ) )
122 dff13 6512 . 2  |-  ( T : ( X C N ) -1-1-> ( ( X F ( N  -  2 ) )  X.  ( G NeighbVtx  X ) )  <->  ( T :
( X C N ) --> ( ( X F ( N  - 
2 ) )  X.  ( G NeighbVtx  X )
)  /\  A. p  e.  ( X C N ) A. a  e.  ( X C N ) ( ( T `
 p )  =  ( T `  a
)  ->  p  =  a ) ) )
1235, 121, 122sylanbrc 698 1  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  T :
( X C N ) -1-1-> ( ( X F ( N  - 
2 ) )  X.  ( G NeighbVtx  X )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   -->wf 5884   -1-1->wf1 5885   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   RRcr 9935   0cc0 9936   1c1 9937    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   2c2 11070   3c3 11071   ZZcz 11377   ZZ>=cuz 11687   #chash 13117  Word cword 13291   lastS clsw 13292   substr csubstr 13295  Vtxcvtx 25874   USGraph cusgr 26044   NeighbVtx cnbgr 26224   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-s2 13593  df-edg 25940  df-upgr 25977  df-umgr 25978  df-usgr 26046  df-nbgr 26228  df-wwlks 26722  df-wwlksn 26723  df-clwwlks 26877  df-clwwlksn 26878
This theorem is referenced by:  numclwlk1lem2f1o  27229
  Copyright terms: Public domain W3C validator