MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwlk1lem2fo Structured version   Visualization version   Unicode version

Theorem numclwlk1lem2fo 27228
Description:  T is an onto function. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 29-May-2021.)
Hypotheses
Ref Expression
extwwlkfab.v  |-  V  =  (Vtx `  G )
extwwlkfab.f  |-  F  =  ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n ClWWalksN  G )  |  ( w `  0 )  =  v } )
extwwlkfab.c  |-  C  =  ( v  e.  V ,  n  e.  ( ZZ>=
`  2 )  |->  { w  e.  ( n ClWWalksN  G )  |  ( ( w `  0
)  =  v  /\  ( w `  (
n  -  2 ) )  =  ( w `
 0 ) ) } )
numclwwlk.t  |-  T  =  ( u  e.  ( X C N ) 
|->  <. ( u substr  <. 0 ,  ( N  - 
2 ) >. ) ,  ( u `  ( N  -  1
) ) >. )
Assertion
Ref Expression
numclwlk1lem2fo  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  T :
( X C N ) -onto-> ( ( X F ( N  - 
2 ) )  X.  ( G NeighbVtx  X )
) )
Distinct variable groups:    n, G, u, v, w    n, N, u, v, w    n, V, v, w    n, X, u, v, w    w, F    u, C    u, F    u, V    u, T
Allowed substitution hints:    C( w, v, n)    T( w, v, n)    F( v, n)

Proof of Theorem numclwlk1lem2fo
Dummy variables  i 
a  p  b  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 extwwlkfab.v . . 3  |-  V  =  (Vtx `  G )
2 extwwlkfab.f . . 3  |-  F  =  ( v  e.  V ,  n  e.  NN  |->  { w  e.  (
n ClWWalksN  G )  |  ( w `  0 )  =  v } )
3 extwwlkfab.c . . 3  |-  C  =  ( v  e.  V ,  n  e.  ( ZZ>=
`  2 )  |->  { w  e.  ( n ClWWalksN  G )  |  ( ( w `  0
)  =  v  /\  ( w `  (
n  -  2 ) )  =  ( w `
 0 ) ) } )
4 numclwwlk.t . . 3  |-  T  =  ( u  e.  ( X C N ) 
|->  <. ( u substr  <. 0 ,  ( N  - 
2 ) >. ) ,  ( u `  ( N  -  1
) ) >. )
51, 2, 3, 4numclwlk1lem2f 27225 . 2  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  T :
( X C N ) --> ( ( X F ( N  - 
2 ) )  X.  ( G NeighbVtx  X )
) )
6 elxp 5131 . . . . 5  |-  ( p  e.  ( ( X F ( N  - 
2 ) )  X.  ( G NeighbVtx  X )
)  <->  E. a E. b
( p  =  <. a ,  b >.  /\  (
a  e.  ( X F ( N  - 
2 ) )  /\  b  e.  ( G NeighbVtx  X ) ) ) )
71, 2, 3numclwlk1lem2foa 27224 . . . . . . . . . . 11  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( (
a  e.  ( X F ( N  - 
2 ) )  /\  b  e.  ( G NeighbVtx  X ) )  ->  (
( a ++  <" X "> ) ++  <" b "> )  e.  ( X C N ) ) )
87com12 32 . . . . . . . . . 10  |-  ( ( a  e.  ( X F ( N  - 
2 ) )  /\  b  e.  ( G NeighbVtx  X ) )  ->  (
( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( (
a ++  <" X "> ) ++  <" b "> )  e.  ( X C N ) ) )
98adantl 482 . . . . . . . . 9  |-  ( ( p  =  <. a ,  b >.  /\  (
a  e.  ( X F ( N  - 
2 ) )  /\  b  e.  ( G NeighbVtx  X ) ) )  -> 
( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>=
`  3 ) )  ->  ( ( a ++ 
<" X "> ) ++  <" b "> )  e.  ( X C N ) ) )
109imp 445 . . . . . . . 8  |-  ( ( ( p  =  <. a ,  b >.  /\  (
a  e.  ( X F ( N  - 
2 ) )  /\  b  e.  ( G NeighbVtx  X ) ) )  /\  ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) )  ->  (
( a ++  <" X "> ) ++  <" b "> )  e.  ( X C N ) )
11 simpl 473 . . . . . . . . 9  |-  ( ( ( ( a ++  <" X "> ) ++  <" b "> )  e.  ( X C N )  /\  (
( p  =  <. a ,  b >.  /\  (
a  e.  ( X F ( N  - 
2 ) )  /\  b  e.  ( G NeighbVtx  X ) ) )  /\  ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) ) )  -> 
( ( a ++  <" X "> ) ++  <" b "> )  e.  ( X C N ) )
12 fveq2 6191 . . . . . . . . . . 11  |-  ( x  =  ( ( a ++ 
<" X "> ) ++  <" b "> )  ->  ( T `  x )  =  ( T `  ( ( a ++  <" X "> ) ++  <" b "> ) ) )
1312eqeq2d 2632 . . . . . . . . . 10  |-  ( x  =  ( ( a ++ 
<" X "> ) ++  <" b "> )  ->  (
p  =  ( T `
 x )  <->  p  =  ( T `  ( ( a ++  <" X "> ) ++  <" b "> ) ) ) )
141, 2, 3, 4numclwlk1lem2fv 27226 . . . . . . . . . . . 12  |-  ( ( ( a ++  <" X "> ) ++  <" b "> )  e.  ( X C N )  ->  ( T `  ( ( a ++  <" X "> ) ++  <" b "> ) )  =  <. ( ( ( a ++  <" X "> ) ++  <" b "> ) substr  <. 0 ,  ( N  -  2 )
>. ) ,  ( ( ( a ++  <" X "> ) ++  <" b "> ) `  ( N  -  1 ) ) >. )
1514adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( a ++  <" X "> ) ++  <" b "> )  e.  ( X C N )  /\  (
( p  =  <. a ,  b >.  /\  (
a  e.  ( X F ( N  - 
2 ) )  /\  b  e.  ( G NeighbVtx  X ) ) )  /\  ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) ) )  -> 
( T `  (
( a ++  <" X "> ) ++  <" b "> ) )  = 
<. ( ( ( a ++ 
<" X "> ) ++  <" b "> ) substr  <. 0 ,  ( N  -  2 ) >. ) ,  ( ( ( a ++  <" X "> ) ++  <" b "> ) `  ( N  -  1 ) )
>. )
1615eqeq2d 2632 . . . . . . . . . 10  |-  ( ( ( ( a ++  <" X "> ) ++  <" b "> )  e.  ( X C N )  /\  (
( p  =  <. a ,  b >.  /\  (
a  e.  ( X F ( N  - 
2 ) )  /\  b  e.  ( G NeighbVtx  X ) ) )  /\  ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) ) )  -> 
( p  =  ( T `  ( ( a ++  <" X "> ) ++  <" b "> ) )  <->  p  =  <. ( ( ( a ++ 
<" X "> ) ++  <" b "> ) substr  <. 0 ,  ( N  -  2 ) >. ) ,  ( ( ( a ++  <" X "> ) ++  <" b "> ) `  ( N  -  1 ) )
>. ) )
1713, 16sylan9bbr 737 . . . . . . . . 9  |-  ( ( ( ( ( a ++ 
<" X "> ) ++  <" b "> )  e.  ( X C N )  /\  ( ( p  =  <. a ,  b
>.  /\  ( a  e.  ( X F ( N  -  2 ) )  /\  b  e.  ( G NeighbVtx  X )
) )  /\  ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) ) )  /\  x  =  ( (
a ++  <" X "> ) ++  <" b "> ) )  -> 
( p  =  ( T `  x )  <-> 
p  =  <. (
( ( a ++  <" X "> ) ++  <" b "> ) substr  <. 0 ,  ( N  -  2 )
>. ) ,  ( ( ( a ++  <" X "> ) ++  <" b "> ) `  ( N  -  1 ) ) >. ) )
18 simprll 802 . . . . . . . . . 10  |-  ( ( ( ( a ++  <" X "> ) ++  <" b "> )  e.  ( X C N )  /\  (
( p  =  <. a ,  b >.  /\  (
a  e.  ( X F ( N  - 
2 ) )  /\  b  e.  ( G NeighbVtx  X ) ) )  /\  ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) ) )  ->  p  =  <. a ,  b >. )
191nbgrisvtx 26255 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e. USGraph  /\  b  e.  ( G NeighbVtx  X )
)  ->  b  e.  V )
2019ex 450 . . . . . . . . . . . . . . . . 17  |-  ( G  e. USGraph  ->  ( b  e.  ( G NeighbVtx  X )  ->  b  e.  V ) )
21203ad2ant1 1082 . . . . . . . . . . . . . . . 16  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( b  e.  ( G NeighbVtx  X )  ->  b  e.  V ) )
22 simp1 1061 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  G  e. USGraph  )
23 uz3m2nn 11731 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  ( ZZ>= `  3
)  ->  ( N  -  2 )  e.  NN )
24233ad2ant3 1084 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( N  -  2 )  e.  NN )
25 simp2 1062 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  X  e.  V )
26 eqid 2622 . . . . . . . . . . . . . . . . . . . . 21  |-  (Edg `  G )  =  (Edg
`  G )
272, 1, 26numclwwlkovfel2 27216 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( G  e. USGraph  /\  ( N  -  2 )  e.  NN  /\  X  e.  V )  ->  (
a  e.  ( X F ( N  - 
2 ) )  <->  ( (
a  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  a
)  -  1 ) ) { ( a `
 i ) ,  ( a `  (
i  +  1 ) ) }  e.  (Edg
`  G )  /\  { ( lastS  `  a ) ,  ( a ` 
0 ) }  e.  (Edg `  G ) )  /\  ( # `  a
)  =  ( N  -  2 )  /\  ( a `  0
)  =  X ) ) )
2822, 24, 25, 27syl3anc 1326 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( a  e.  ( X F ( N  -  2 ) )  <->  ( ( a  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  a
)  -  1 ) ) { ( a `
 i ) ,  ( a `  (
i  +  1 ) ) }  e.  (Edg
`  G )  /\  { ( lastS  `  a ) ,  ( a ` 
0 ) }  e.  (Edg `  G ) )  /\  ( # `  a
)  =  ( N  -  2 )  /\  ( a `  0
)  =  X ) ) )
29 df-3an 1039 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( a  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  a )  -  1 ) ) { ( a `  i ) ,  ( a `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  { ( lastS  `  a ) ,  ( a ` 
0 ) }  e.  (Edg `  G ) )  /\  ( # `  a
)  =  ( N  -  2 )  /\  ( a `  0
)  =  X )  <-> 
( ( ( a  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  a
)  -  1 ) ) { ( a `
 i ) ,  ( a `  (
i  +  1 ) ) }  e.  (Edg
`  G )  /\  { ( lastS  `  a ) ,  ( a ` 
0 ) }  e.  (Edg `  G ) )  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( a ` 
0 )  =  X ) )
3028, 29syl6bb 276 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( a  e.  ( X F ( N  -  2 ) )  <->  ( ( ( a  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  a
)  -  1 ) ) { ( a `
 i ) ,  ( a `  (
i  +  1 ) ) }  e.  (Edg
`  G )  /\  { ( lastS  `  a ) ,  ( a ` 
0 ) }  e.  (Edg `  G ) )  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( a ` 
0 )  =  X ) ) )
31 simplll 798 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( a  e. Word  V  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) )  /\  b  e.  V )  ->  a  e. Word  V )
32 s1cl 13382 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( X  e.  V  ->  <" X ">  e. Word  V )
3332adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  ->  <" X ">  e. Word  V )
3433adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( a  e. Word  V  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) )  ->  <" X ">  e. Word  V )
3534adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( a  e. Word  V  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) )  /\  b  e.  V )  ->  <" X ">  e. Word  V )
36 s1cl 13382 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( b  e.  V  ->  <" b ">  e. Word  V )
3736adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( a  e. Word  V  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) )  /\  b  e.  V )  ->  <" b ">  e. Word  V )
38 ccatass 13371 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( a  e. Word  V  /\  <" X ">  e. Word  V  /\  <" b ">  e. Word  V )  ->  ( ( a ++  <" X "> ) ++  <" b "> )  =  ( a ++  ( <" X "> ++  <" b "> ) ) )
3938oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( a  e. Word  V  /\  <" X ">  e. Word  V  /\  <" b ">  e. Word  V )  ->  ( ( ( a ++ 
<" X "> ) ++  <" b "> ) substr  <. 0 ,  ( N  -  2 ) >. )  =  ( ( a ++  ( <" X "> ++  <" b "> ) ) substr  <. 0 ,  ( N  -  2 ) >. ) )
4031, 35, 37, 39syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( a  e. Word  V  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) )  /\  b  e.  V )  ->  (
( ( a ++  <" X "> ) ++  <" b "> ) substr  <. 0 ,  ( N  -  2 )
>. )  =  (
( a ++  ( <" X "> ++  <" b "> ) ) substr  <. 0 ,  ( N  -  2 ) >. ) )
41 ccatcl 13359 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
<" X ">  e. Word  V  /\  <" b ">  e. Word  V )  ->  ( <" X "> ++  <" b "> )  e. Word  V
)
4234, 36, 41syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( a  e. Word  V  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) )  /\  b  e.  V )  ->  ( <" X "> ++  <" b "> )  e. Word  V )
43 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( a  e. Word  V  /\  ( # `  a )  =  ( N  - 
2 ) )  -> 
( # `  a )  =  ( N  - 
2 ) )
4443eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( a  e. Word  V  /\  ( # `  a )  =  ( N  - 
2 ) )  -> 
( N  -  2 )  =  ( # `  a ) )
4544adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( a  e. Word  V  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) )  ->  ( N  -  2 )  =  ( # `  a
) )
4645adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( a  e. Word  V  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) )  /\  b  e.  V )  ->  ( N  -  2 )  =  ( # `  a
) )
47 swrdccatid 13497 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( a  e. Word  V  /\  ( <" X "> ++  <" b "> )  e. Word  V  /\  ( N  -  2 )  =  ( # `  a ) )  -> 
( ( a ++  (
<" X "> ++  <" b "> ) ) substr  <. 0 ,  ( N  -  2 ) >. )  =  a )
4831, 42, 46, 47syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( a  e. Word  V  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) )  /\  b  e.  V )  ->  (
( a ++  ( <" X "> ++  <" b "> ) ) substr  <. 0 ,  ( N  -  2 ) >. )  =  a )
4940, 48eqtr2d 2657 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( a  e. Word  V  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) )  /\  b  e.  V )  ->  a  =  ( ( ( a ++  <" X "> ) ++  <" b "> ) substr  <. 0 ,  ( N  -  2 ) >. ) )
50 ovex 6678 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( a ++  <" X "> ) ++  <" b "> )  e.  _V
51 lsw 13351 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( a ++  <" X "> ) ++  <" b "> )  e.  _V  ->  ( lastS  `  ( (
a ++  <" X "> ) ++  <" b "> ) )  =  ( ( ( a ++ 
<" X "> ) ++  <" b "> ) `  (
( # `  ( ( a ++  <" X "> ) ++  <" b "> ) )  - 
1 ) ) )
5250, 51ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( lastS  `  (
( a ++  <" X "> ) ++  <" b "> ) )  =  ( ( ( a ++ 
<" X "> ) ++  <" b "> ) `  (
( # `  ( ( a ++  <" X "> ) ++  <" b "> ) )  - 
1 ) )
53 simpl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( a  e. Word  V  /\  ( # `  a )  =  ( N  - 
2 ) )  -> 
a  e. Word  V )
54 ccatcl 13359 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( a  e. Word  V  /\  <" X ">  e. Word  V )  ->  (
a ++  <" X "> )  e. Word  V )
5553, 33, 54syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( a  e. Word  V  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) )  ->  (
a ++  <" X "> )  e. Word  V )
56 lswccats1 13411 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( a ++  <" X "> )  e. Word  V  /\  b  e.  V
)  ->  ( lastS  `  (
( a ++  <" X "> ) ++  <" b "> ) )  =  b )
5755, 56sylan 488 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( a  e. Word  V  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) )  /\  b  e.  V )  ->  ( lastS  `  ( ( a ++  <" X "> ) ++  <" b "> ) )  =  b )
58 ccatlen 13360 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( a ++  <" X "> )  e. Word  V  /\  <" b ">  e. Word  V )  ->  ( # `  (
( a ++  <" X "> ) ++  <" b "> ) )  =  ( ( # `  (
a ++  <" X "> ) )  +  (
# `  <" b "> ) ) )
5955, 36, 58syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( a  e. Word  V  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) )  /\  b  e.  V )  ->  ( # `
 ( ( a ++ 
<" X "> ) ++  <" b "> ) )  =  ( ( # `  (
a ++  <" X "> ) )  +  (
# `  <" b "> ) ) )
6053, 33anim12i 590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( a  e. Word  V  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) )  ->  (
a  e. Word  V  /\  <" X ">  e. Word  V ) )
6160adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( a  e. Word  V  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) )  /\  b  e.  V )  ->  (
a  e. Word  V  /\  <" X ">  e. Word  V ) )
62 ccatlen 13360 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( a  e. Word  V  /\  <" X ">  e. Word  V )  ->  ( # `
 ( a ++  <" X "> )
)  =  ( (
# `  a )  +  ( # `  <" X "> )
) )
6361, 62syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( a  e. Word  V  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) )  /\  b  e.  V )  ->  ( # `
 ( a ++  <" X "> )
)  =  ( (
# `  a )  +  ( # `  <" X "> )
) )
64 s1len 13385 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( # `  <" b "> )  =  1
6564a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( a  e. Word  V  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) )  /\  b  e.  V )  ->  ( # `
 <" b "> )  =  1 )
6663, 65oveq12d 6668 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( a  e. Word  V  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) )  /\  b  e.  V )  ->  (
( # `  ( a ++ 
<" X "> ) )  +  (
# `  <" b "> ) )  =  ( ( ( # `  a )  +  (
# `  <" X "> ) )  +  1 ) )
67 s1len 13385 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( # `  <" X "> )  =  1
6867a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  -> 
( # `  <" X "> )  =  1 )
6943, 68oveqan12d 6669 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( a  e. Word  V  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) )  ->  (
( # `  a )  +  ( # `  <" X "> )
)  =  ( ( N  -  2 )  +  1 ) )
7069oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( a  e. Word  V  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) )  ->  (
( ( # `  a
)  +  ( # `  <" X "> ) )  +  1 )  =  ( ( ( N  -  2 )  +  1 )  +  1 ) )
71 eluzelcn 11699 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( N  e.  ( ZZ>= `  3
)  ->  N  e.  CC )
72 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( N  e.  CC  ->  N  e.  CC )
73 2cnd 11093 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( N  e.  CC  ->  2  e.  CC )
7472, 73subcld 10392 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( N  e.  CC  ->  ( N  -  2 )  e.  CC )
75 1cnd 10056 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( N  e.  CC  ->  1  e.  CC )
7674, 75, 75addassd 10062 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( N  e.  CC  ->  (
( ( N  - 
2 )  +  1 )  +  1 )  =  ( ( N  -  2 )  +  ( 1  +  1 ) ) )
77 1p1e2 11134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( 1  +  1 )  =  2
7877a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( N  e.  CC  ->  (
1  +  1 )  =  2 )
7978oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( N  e.  CC  ->  (
( N  -  2 )  +  ( 1  +  1 ) )  =  ( ( N  -  2 )  +  2 ) )
8076, 79eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( N  e.  CC  ->  (
( ( N  - 
2 )  +  1 )  +  1 )  =  ( ( N  -  2 )  +  2 ) )
8171, 80syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( N  e.  ( ZZ>= `  3
)  ->  ( (
( N  -  2 )  +  1 )  +  1 )  =  ( ( N  - 
2 )  +  2 ) )
82 2cnd 11093 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( N  e.  ( ZZ>= `  3
)  ->  2  e.  CC )
8371, 82npcand 10396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( N  e.  ( ZZ>= `  3
)  ->  ( ( N  -  2 )  +  2 )  =  N )
8481, 83eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( N  e.  ( ZZ>= `  3
)  ->  ( (
( N  -  2 )  +  1 )  +  1 )  =  N )
8584adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  -> 
( ( ( N  -  2 )  +  1 )  +  1 )  =  N )
8685adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( a  e. Word  V  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) )  ->  (
( ( N  - 
2 )  +  1 )  +  1 )  =  N )
8770, 86eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( a  e. Word  V  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) )  ->  (
( ( # `  a
)  +  ( # `  <" X "> ) )  +  1 )  =  N )
8887adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( a  e. Word  V  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) )  /\  b  e.  V )  ->  (
( ( # `  a
)  +  ( # `  <" X "> ) )  +  1 )  =  N )
8959, 66, 883eqtrd 2660 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( a  e. Word  V  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) )  /\  b  e.  V )  ->  ( # `
 ( ( a ++ 
<" X "> ) ++  <" b "> ) )  =  N )
9089oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( a  e. Word  V  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) )  /\  b  e.  V )  ->  (
( # `  ( ( a ++  <" X "> ) ++  <" b "> ) )  - 
1 )  =  ( N  -  1 ) )
9190fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( a  e. Word  V  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) )  /\  b  e.  V )  ->  (
( ( a ++  <" X "> ) ++  <" b "> ) `  ( ( # `
 ( ( a ++ 
<" X "> ) ++  <" b "> ) )  - 
1 ) )  =  ( ( ( a ++ 
<" X "> ) ++  <" b "> ) `  ( N  -  1 ) ) )
9252, 57, 913eqtr3a 2680 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( a  e. Word  V  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) )  /\  b  e.  V )  ->  b  =  ( ( ( a ++  <" X "> ) ++  <" b "> ) `  ( N  -  1 ) ) )
9349, 92opeq12d 4410 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( a  e. Word  V  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) )  /\  b  e.  V )  ->  <. a ,  b >.  =  <. ( ( ( a ++  <" X "> ) ++  <" b "> ) substr  <. 0 ,  ( N  -  2 )
>. ) ,  ( ( ( a ++  <" X "> ) ++  <" b "> ) `  ( N  -  1 ) ) >. )
9493exp31 630 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( a  e. Word  V  /\  ( # `  a )  =  ( N  - 
2 ) )  -> 
( ( X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( b  e.  V  ->  <. a ,  b >.  =  <. ( ( ( a ++  <" X "> ) ++  <" b "> ) substr  <. 0 ,  ( N  -  2 )
>. ) ,  ( ( ( a ++  <" X "> ) ++  <" b "> ) `  ( N  -  1 ) ) >. ) ) )
95943ad2antl1 1223 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( a  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  a )  -  1 ) ) { ( a `  i ) ,  ( a `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  { ( lastS  `  a ) ,  ( a ` 
0 ) }  e.  (Edg `  G ) )  /\  ( # `  a
)  =  ( N  -  2 ) )  ->  ( ( X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( b  e.  V  ->  <. a ,  b >.  =  <. ( ( ( a ++  <" X "> ) ++  <" b "> ) substr  <. 0 ,  ( N  -  2 )
>. ) ,  ( ( ( a ++  <" X "> ) ++  <" b "> ) `  ( N  -  1 ) ) >. ) ) )
9695adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( a  e. Word  V  /\  A. i  e.  ( 0..^ ( (
# `  a )  -  1 ) ) { ( a `  i ) ,  ( a `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  {
( lastS  `  a ) ,  ( a `  0
) }  e.  (Edg
`  G ) )  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( a ` 
0 )  =  X )  ->  ( ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  -> 
( b  e.  V  -> 
<. a ,  b >.  =  <. ( ( ( a ++  <" X "> ) ++  <" b "> ) substr  <. 0 ,  ( N  -  2 ) >. ) ,  ( ( ( a ++  <" X "> ) ++  <" b "> ) `  ( N  -  1 ) )
>. ) ) )
9796com12 32 . . . . . . . . . . . . . . . . . . 19  |-  ( ( X  e.  V  /\  N  e.  ( ZZ>= ` 
3 ) )  -> 
( ( ( ( a  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  a
)  -  1 ) ) { ( a `
 i ) ,  ( a `  (
i  +  1 ) ) }  e.  (Edg
`  G )  /\  { ( lastS  `  a ) ,  ( a ` 
0 ) }  e.  (Edg `  G ) )  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( a ` 
0 )  =  X )  ->  ( b  e.  V  ->  <. a ,  b >.  =  <. ( ( ( a ++  <" X "> ) ++  <" b "> ) substr  <. 0 ,  ( N  -  2 )
>. ) ,  ( ( ( a ++  <" X "> ) ++  <" b "> ) `  ( N  -  1 ) ) >. ) ) )
98973adant1 1079 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( (
( ( a  e. Word  V  /\  A. i  e.  ( 0..^ ( (
# `  a )  -  1 ) ) { ( a `  i ) ,  ( a `  ( i  +  1 ) ) }  e.  (Edg `  G )  /\  {
( lastS  `  a ) ,  ( a `  0
) }  e.  (Edg
`  G ) )  /\  ( # `  a
)  =  ( N  -  2 ) )  /\  ( a ` 
0 )  =  X )  ->  ( b  e.  V  ->  <. a ,  b >.  =  <. ( ( ( a ++  <" X "> ) ++  <" b "> ) substr  <. 0 ,  ( N  -  2 )
>. ) ,  ( ( ( a ++  <" X "> ) ++  <" b "> ) `  ( N  -  1 ) ) >. ) ) )
9930, 98sylbid 230 . . . . . . . . . . . . . . . . 17  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( a  e.  ( X F ( N  -  2 ) )  ->  ( b  e.  V  ->  <. a ,  b >.  =  <. ( ( ( a ++  <" X "> ) ++  <" b "> ) substr  <. 0 ,  ( N  -  2 )
>. ) ,  ( ( ( a ++  <" X "> ) ++  <" b "> ) `  ( N  -  1 ) ) >. ) ) )
10099com23 86 . . . . . . . . . . . . . . . 16  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( b  e.  V  ->  ( a  e.  ( X F ( N  -  2 ) )  ->  <. a ,  b >.  =  <. ( ( ( a ++  <" X "> ) ++  <" b "> ) substr  <. 0 ,  ( N  -  2 )
>. ) ,  ( ( ( a ++  <" X "> ) ++  <" b "> ) `  ( N  -  1 ) ) >. ) ) )
10121, 100syld 47 . . . . . . . . . . . . . . 15  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  ( b  e.  ( G NeighbVtx  X )  ->  ( a  e.  ( X F ( N  -  2 ) )  ->  <. a ,  b
>.  =  <. ( ( ( a ++  <" X "> ) ++  <" b "> ) substr  <. 0 ,  ( N  -  2 ) >. ) ,  ( ( ( a ++  <" X "> ) ++  <" b "> ) `  ( N  -  1 ) )
>. ) ) )
102101com13 88 . . . . . . . . . . . . . 14  |-  ( a  e.  ( X F ( N  -  2 ) )  ->  (
b  e.  ( G NeighbVtx  X )  ->  (
( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  <. a ,  b >.  =  <. ( ( ( a ++  <" X "> ) ++  <" b "> ) substr  <. 0 ,  ( N  -  2 )
>. ) ,  ( ( ( a ++  <" X "> ) ++  <" b "> ) `  ( N  -  1 ) ) >. ) ) )
103102imp 445 . . . . . . . . . . . . 13  |-  ( ( a  e.  ( X F ( N  - 
2 ) )  /\  b  e.  ( G NeighbVtx  X ) )  ->  (
( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  <. a ,  b >.  =  <. ( ( ( a ++  <" X "> ) ++  <" b "> ) substr  <. 0 ,  ( N  -  2 )
>. ) ,  ( ( ( a ++  <" X "> ) ++  <" b "> ) `  ( N  -  1 ) ) >. ) )
104103adantl 482 . . . . . . . . . . . 12  |-  ( ( p  =  <. a ,  b >.  /\  (
a  e.  ( X F ( N  - 
2 ) )  /\  b  e.  ( G NeighbVtx  X ) ) )  -> 
( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>=
`  3 ) )  ->  <. a ,  b
>.  =  <. ( ( ( a ++  <" X "> ) ++  <" b "> ) substr  <. 0 ,  ( N  -  2 ) >. ) ,  ( ( ( a ++  <" X "> ) ++  <" b "> ) `  ( N  -  1 ) )
>. ) )
105104imp 445 . . . . . . . . . . 11  |-  ( ( ( p  =  <. a ,  b >.  /\  (
a  e.  ( X F ( N  - 
2 ) )  /\  b  e.  ( G NeighbVtx  X ) ) )  /\  ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) )  ->  <. a ,  b >.  =  <. ( ( ( a ++  <" X "> ) ++  <" b "> ) substr  <. 0 ,  ( N  -  2 )
>. ) ,  ( ( ( a ++  <" X "> ) ++  <" b "> ) `  ( N  -  1 ) ) >. )
106105adantl 482 . . . . . . . . . 10  |-  ( ( ( ( a ++  <" X "> ) ++  <" b "> )  e.  ( X C N )  /\  (
( p  =  <. a ,  b >.  /\  (
a  e.  ( X F ( N  - 
2 ) )  /\  b  e.  ( G NeighbVtx  X ) ) )  /\  ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) ) )  ->  <. a ,  b >.  =  <. ( ( ( a ++  <" X "> ) ++  <" b "> ) substr  <. 0 ,  ( N  -  2 ) >. ) ,  ( ( ( a ++  <" X "> ) ++  <" b "> ) `  ( N  -  1 ) )
>. )
10718, 106eqtrd 2656 . . . . . . . . 9  |-  ( ( ( ( a ++  <" X "> ) ++  <" b "> )  e.  ( X C N )  /\  (
( p  =  <. a ,  b >.  /\  (
a  e.  ( X F ( N  - 
2 ) )  /\  b  e.  ( G NeighbVtx  X ) ) )  /\  ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) ) )  ->  p  =  <. ( ( ( a ++  <" X "> ) ++  <" b "> ) substr  <. 0 ,  ( N  -  2 ) >. ) ,  ( ( ( a ++  <" X "> ) ++  <" b "> ) `  ( N  -  1 ) )
>. )
10811, 17, 107rspcedvd 3317 . . . . . . . 8  |-  ( ( ( ( a ++  <" X "> ) ++  <" b "> )  e.  ( X C N )  /\  (
( p  =  <. a ,  b >.  /\  (
a  e.  ( X F ( N  - 
2 ) )  /\  b  e.  ( G NeighbVtx  X ) ) )  /\  ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) ) )  ->  E. x  e.  ( X C N ) p  =  ( T `  x ) )
10910, 108mpancom 703 . . . . . . 7  |-  ( ( ( p  =  <. a ,  b >.  /\  (
a  e.  ( X F ( N  - 
2 ) )  /\  b  e.  ( G NeighbVtx  X ) ) )  /\  ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
) )  ->  E. x  e.  ( X C N ) p  =  ( T `  x ) )
110109ex 450 . . . . . 6  |-  ( ( p  =  <. a ,  b >.  /\  (
a  e.  ( X F ( N  - 
2 ) )  /\  b  e.  ( G NeighbVtx  X ) ) )  -> 
( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>=
`  3 ) )  ->  E. x  e.  ( X C N ) p  =  ( T `
 x ) ) )
111110exlimivv 1860 . . . . 5  |-  ( E. a E. b ( p  =  <. a ,  b >.  /\  (
a  e.  ( X F ( N  - 
2 ) )  /\  b  e.  ( G NeighbVtx  X ) ) )  -> 
( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>=
`  3 ) )  ->  E. x  e.  ( X C N ) p  =  ( T `
 x ) ) )
1126, 111sylbi 207 . . . 4  |-  ( p  e.  ( ( X F ( N  - 
2 ) )  X.  ( G NeighbVtx  X )
)  ->  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  E. x  e.  ( X C N ) p  =  ( T `  x ) ) )
113112impcom 446 . . 3  |-  ( ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  /\  p  e.  ( ( X F ( N  -  2 ) )  X.  ( G NeighbVtx  X ) ) )  ->  E. x  e.  ( X C N ) p  =  ( T `
 x ) )
114113ralrimiva 2966 . 2  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  A. p  e.  ( ( X F ( N  -  2 ) )  X.  ( G NeighbVtx  X ) ) E. x  e.  ( X C N ) p  =  ( T `  x ) )
115 dffo3 6374 . 2  |-  ( T : ( X C N ) -onto-> ( ( X F ( N  -  2 ) )  X.  ( G NeighbVtx  X ) )  <->  ( T :
( X C N ) --> ( ( X F ( N  - 
2 ) )  X.  ( G NeighbVtx  X )
)  /\  A. p  e.  ( ( X F ( N  -  2 ) )  X.  ( G NeighbVtx  X ) ) E. x  e.  ( X C N ) p  =  ( T `  x ) ) )
1165, 114, 115sylanbrc 698 1  |-  ( ( G  e. USGraph  /\  X  e.  V  /\  N  e.  ( ZZ>= `  3 )
)  ->  T :
( X C N ) -onto-> ( ( X F ( N  - 
2 ) )  X.  ( G NeighbVtx  X )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200   {cpr 4179   <.cop 4183    |-> cmpt 4729    X. cxp 5112   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266   NNcn 11020   2c2 11070   3c3 11071   ZZ>=cuz 11687  ..^cfzo 12465   #chash 13117  Word cword 13291   lastS clsw 13292   ++ cconcat 13293   <"cs1 13294   substr csubstr 13295  Vtxcvtx 25874  Edgcedg 25939   USGraph cusgr 26044   NeighbVtx cnbgr 26224   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-edg 25940  df-upgr 25977  df-umgr 25978  df-usgr 26046  df-nbgr 26228  df-wwlks 26722  df-wwlksn 26723  df-clwwlks 26877  df-clwwlksn 26878
This theorem is referenced by:  numclwlk1lem2f1o  27229
  Copyright terms: Public domain W3C validator