MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  obselocv Structured version   Visualization version   Unicode version

Theorem obselocv 20072
Description: A basis element is in the orthocomplement of a subset of the basis iff it is not in the subset. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypothesis
Ref Expression
obselocv.o  |-  ._|_  =  ( ocv `  W )
Assertion
Ref Expression
obselocv  |-  ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  ->  ( A  e.  (  ._|_  `  C )  <->  -.  A  e.  C ) )

Proof of Theorem obselocv
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . . 7  |-  ( 0g
`  W )  =  ( 0g `  W
)
21obsne0 20069 . . . . . 6  |-  ( ( B  e.  (OBasis `  W )  /\  A  e.  B )  ->  A  =/=  ( 0g `  W
) )
323adant2 1080 . . . . 5  |-  ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  ->  A  =/=  ( 0g `  W
) )
4 elin 3796 . . . . . . . 8  |-  ( A  e.  ( C  i^i  (  ._|_  `  C )
)  <->  ( A  e.  C  /\  A  e.  (  ._|_  `  C ) ) )
5 obsrcl 20067 . . . . . . . . . . . . . 14  |-  ( B  e.  (OBasis `  W
)  ->  W  e.  PreHil )
653ad2ant1 1082 . . . . . . . . . . . . 13  |-  ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  ->  W  e.  PreHil )
7 phllmod 19975 . . . . . . . . . . . . 13  |-  ( W  e.  PreHil  ->  W  e.  LMod )
86, 7syl 17 . . . . . . . . . . . 12  |-  ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  ->  W  e.  LMod )
9 simp2 1062 . . . . . . . . . . . . 13  |-  ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  ->  C  C_  B )
10 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( Base `  W )  =  (
Base `  W )
1110obsss 20068 . . . . . . . . . . . . . 14  |-  ( B  e.  (OBasis `  W
)  ->  B  C_  ( Base `  W ) )
12113ad2ant1 1082 . . . . . . . . . . . . 13  |-  ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  ->  B  C_  ( Base `  W
) )
139, 12sstrd 3613 . . . . . . . . . . . 12  |-  ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  ->  C  C_  ( Base `  W
) )
14 eqid 2622 . . . . . . . . . . . . 13  |-  ( LSpan `  W )  =  (
LSpan `  W )
1510, 14lspssid 18985 . . . . . . . . . . . 12  |-  ( ( W  e.  LMod  /\  C  C_  ( Base `  W
) )  ->  C  C_  ( ( LSpan `  W
) `  C )
)
168, 13, 15syl2anc 693 . . . . . . . . . . 11  |-  ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  ->  C  C_  ( ( LSpan `  W
) `  C )
)
17 ssrin 3838 . . . . . . . . . . 11  |-  ( C 
C_  ( ( LSpan `  W ) `  C
)  ->  ( C  i^i  (  ._|_  `  C
) )  C_  (
( ( LSpan `  W
) `  C )  i^i  (  ._|_  `  C
) ) )
1816, 17syl 17 . . . . . . . . . 10  |-  ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  ->  ( C  i^i  (  ._|_  `  C
) )  C_  (
( ( LSpan `  W
) `  C )  i^i  (  ._|_  `  C
) ) )
19 obselocv.o . . . . . . . . . . . . . 14  |-  ._|_  =  ( ocv `  W )
2010, 19, 14ocvlsp 20020 . . . . . . . . . . . . 13  |-  ( ( W  e.  PreHil  /\  C  C_  ( Base `  W
) )  ->  (  ._|_  `  ( ( LSpan `  W ) `  C
) )  =  ( 
._|_  `  C ) )
216, 13, 20syl2anc 693 . . . . . . . . . . . 12  |-  ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  ->  (  ._|_  `  ( ( LSpan `  W ) `  C
) )  =  ( 
._|_  `  C ) )
2221ineq2d 3814 . . . . . . . . . . 11  |-  ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  ->  (
( ( LSpan `  W
) `  C )  i^i  (  ._|_  `  (
( LSpan `  W ) `  C ) ) )  =  ( ( (
LSpan `  W ) `  C )  i^i  (  ._|_  `  C ) ) )
23 eqid 2622 . . . . . . . . . . . . . 14  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
2410, 23, 14lspcl 18976 . . . . . . . . . . . . 13  |-  ( ( W  e.  LMod  /\  C  C_  ( Base `  W
) )  ->  (
( LSpan `  W ) `  C )  e.  (
LSubSp `  W ) )
258, 13, 24syl2anc 693 . . . . . . . . . . . 12  |-  ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  ->  (
( LSpan `  W ) `  C )  e.  (
LSubSp `  W ) )
2619, 23, 1ocvin 20018 . . . . . . . . . . . 12  |-  ( ( W  e.  PreHil  /\  (
( LSpan `  W ) `  C )  e.  (
LSubSp `  W ) )  ->  ( ( (
LSpan `  W ) `  C )  i^i  (  ._|_  `  ( ( LSpan `  W ) `  C
) ) )  =  { ( 0g `  W ) } )
276, 25, 26syl2anc 693 . . . . . . . . . . 11  |-  ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  ->  (
( ( LSpan `  W
) `  C )  i^i  (  ._|_  `  (
( LSpan `  W ) `  C ) ) )  =  { ( 0g
`  W ) } )
2822, 27eqtr3d 2658 . . . . . . . . . 10  |-  ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  ->  (
( ( LSpan `  W
) `  C )  i^i  (  ._|_  `  C
) )  =  {
( 0g `  W
) } )
2918, 28sseqtrd 3641 . . . . . . . . 9  |-  ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  ->  ( C  i^i  (  ._|_  `  C
) )  C_  { ( 0g `  W ) } )
3029sseld 3602 . . . . . . . 8  |-  ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  ->  ( A  e.  ( C  i^i  (  ._|_  `  C
) )  ->  A  e.  { ( 0g `  W ) } ) )
314, 30syl5bir 233 . . . . . . 7  |-  ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  ->  (
( A  e.  C  /\  A  e.  (  ._|_  `  C ) )  ->  A  e.  {
( 0g `  W
) } ) )
32 elsni 4194 . . . . . . 7  |-  ( A  e.  { ( 0g
`  W ) }  ->  A  =  ( 0g `  W ) )
3331, 32syl6 35 . . . . . 6  |-  ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  ->  (
( A  e.  C  /\  A  e.  (  ._|_  `  C ) )  ->  A  =  ( 0g `  W ) ) )
3433necon3ad 2807 . . . . 5  |-  ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  ->  ( A  =/=  ( 0g `  W )  ->  -.  ( A  e.  C  /\  A  e.  (  ._|_  `  C ) ) ) )
353, 34mpd 15 . . . 4  |-  ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  ->  -.  ( A  e.  C  /\  A  e.  (  ._|_  `  C ) ) )
36 imnan 438 . . . 4  |-  ( ( A  e.  C  ->  -.  A  e.  (  ._|_  `  C ) )  <->  -.  ( A  e.  C  /\  A  e.  (  ._|_  `  C ) ) )
3735, 36sylibr 224 . . 3  |-  ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  ->  ( A  e.  C  ->  -.  A  e.  (  ._|_  `  C ) ) )
3837con2d 129 . 2  |-  ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  ->  ( A  e.  (  ._|_  `  C )  ->  -.  A  e.  C )
)
39 simpr 477 . . . . . . 7  |-  ( ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  /\  x  e.  C )  ->  x  e.  C )
40 eleq1 2689 . . . . . . 7  |-  ( A  =  x  ->  ( A  e.  C  <->  x  e.  C ) )
4139, 40syl5ibrcom 237 . . . . . 6  |-  ( ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  /\  x  e.  C )  ->  ( A  =  x  ->  A  e.  C ) )
4241con3d 148 . . . . 5  |-  ( ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  /\  x  e.  C )  ->  ( -.  A  e.  C  ->  -.  A  =  x ) )
43 simpl1 1064 . . . . . . 7  |-  ( ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  /\  x  e.  C )  ->  B  e.  (OBasis `  W )
)
44 simpl3 1066 . . . . . . 7  |-  ( ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  /\  x  e.  C )  ->  A  e.  B )
459sselda 3603 . . . . . . 7  |-  ( ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  /\  x  e.  C )  ->  x  e.  B )
46 eqid 2622 . . . . . . . 8  |-  ( .i
`  W )  =  ( .i `  W
)
47 eqid 2622 . . . . . . . 8  |-  (Scalar `  W )  =  (Scalar `  W )
48 eqid 2622 . . . . . . . 8  |-  ( 1r
`  (Scalar `  W )
)  =  ( 1r
`  (Scalar `  W )
)
49 eqid 2622 . . . . . . . 8  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
5010, 46, 47, 48, 49obsip 20065 . . . . . . 7  |-  ( ( B  e.  (OBasis `  W )  /\  A  e.  B  /\  x  e.  B )  ->  ( A ( .i `  W ) x )  =  if ( A  =  x ,  ( 1r `  (Scalar `  W ) ) ,  ( 0g `  (Scalar `  W ) ) ) )
5143, 44, 45, 50syl3anc 1326 . . . . . 6  |-  ( ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  /\  x  e.  C )  ->  ( A ( .i `  W ) x )  =  if ( A  =  x ,  ( 1r `  (Scalar `  W ) ) ,  ( 0g `  (Scalar `  W ) ) ) )
52 iffalse 4095 . . . . . . 7  |-  ( -.  A  =  x  ->  if ( A  =  x ,  ( 1r `  (Scalar `  W ) ) ,  ( 0g `  (Scalar `  W ) ) )  =  ( 0g
`  (Scalar `  W )
) )
5352eqeq2d 2632 . . . . . 6  |-  ( -.  A  =  x  -> 
( ( A ( .i `  W ) x )  =  if ( A  =  x ,  ( 1r `  (Scalar `  W ) ) ,  ( 0g `  (Scalar `  W ) ) )  <->  ( A ( .i `  W ) x )  =  ( 0g `  (Scalar `  W ) ) ) )
5451, 53syl5ibcom 235 . . . . 5  |-  ( ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  /\  x  e.  C )  ->  ( -.  A  =  x  ->  ( A ( .i
`  W ) x )  =  ( 0g
`  (Scalar `  W )
) ) )
5542, 54syld 47 . . . 4  |-  ( ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  /\  x  e.  C )  ->  ( -.  A  e.  C  ->  ( A ( .i
`  W ) x )  =  ( 0g
`  (Scalar `  W )
) ) )
5655ralrimdva 2969 . . 3  |-  ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  ->  ( -.  A  e.  C  ->  A. x  e.  C  ( A ( .i `  W ) x )  =  ( 0g `  (Scalar `  W ) ) ) )
57 simp3 1063 . . . . 5  |-  ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  ->  A  e.  B )
5812, 57sseldd 3604 . . . 4  |-  ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  ->  A  e.  ( Base `  W
) )
5910, 46, 47, 49, 19elocv 20012 . . . . . 6  |-  ( A  e.  (  ._|_  `  C
)  <->  ( C  C_  ( Base `  W )  /\  A  e.  ( Base `  W )  /\  A. x  e.  C  ( A ( .i `  W ) x )  =  ( 0g `  (Scalar `  W ) ) ) )
60 df-3an 1039 . . . . . 6  |-  ( ( C  C_  ( Base `  W )  /\  A  e.  ( Base `  W
)  /\  A. x  e.  C  ( A
( .i `  W
) x )  =  ( 0g `  (Scalar `  W ) ) )  <-> 
( ( C  C_  ( Base `  W )  /\  A  e.  ( Base `  W ) )  /\  A. x  e.  C  ( A ( .i `  W ) x )  =  ( 0g `  (Scalar `  W ) ) ) )
6159, 60bitri 264 . . . . 5  |-  ( A  e.  (  ._|_  `  C
)  <->  ( ( C 
C_  ( Base `  W
)  /\  A  e.  ( Base `  W )
)  /\  A. x  e.  C  ( A
( .i `  W
) x )  =  ( 0g `  (Scalar `  W ) ) ) )
6261baib 944 . . . 4  |-  ( ( C  C_  ( Base `  W )  /\  A  e.  ( Base `  W
) )  ->  ( A  e.  (  ._|_  `  C )  <->  A. x  e.  C  ( A
( .i `  W
) x )  =  ( 0g `  (Scalar `  W ) ) ) )
6313, 58, 62syl2anc 693 . . 3  |-  ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  ->  ( A  e.  (  ._|_  `  C )  <->  A. x  e.  C  ( A
( .i `  W
) x )  =  ( 0g `  (Scalar `  W ) ) ) )
6456, 63sylibrd 249 . 2  |-  ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  ->  ( -.  A  e.  C  ->  A  e.  (  ._|_  `  C ) ) )
6538, 64impbid 202 1  |-  ( ( B  e.  (OBasis `  W )  /\  C  C_  B  /\  A  e.  B )  ->  ( A  e.  (  ._|_  `  C )  <->  -.  A  e.  C ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    i^i cin 3573    C_ wss 3574   ifcif 4086   {csn 4177   ` cfv 5888  (class class class)co 6650   Basecbs 15857  Scalarcsca 15944   .icip 15946   0gc0g 16100   1rcur 18501   LModclmod 18863   LSubSpclss 18932   LSpanclspn 18971   PreHilcphl 19969   ocvcocv 20004  OBasiscobs 20046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-ghm 17658  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-rnghom 18715  df-drng 18749  df-staf 18845  df-srng 18846  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lmhm 19022  df-lvec 19103  df-sra 19172  df-rgmod 19173  df-phl 19971  df-ocv 20007  df-obs 20049
This theorem is referenced by:  obs2ss  20073  obslbs  20074
  Copyright terms: Public domain W3C validator