Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofoprabco Structured version   Visualization version   Unicode version

Theorem ofoprabco 29464
Description: Function operation as a composition with an operation. (Contributed by Thierry Arnoux, 4-Jun-2017.)
Hypotheses
Ref Expression
ofoprabco.1  |-  F/_ a M
ofoprabco.2  |-  ( ph  ->  F : A --> B )
ofoprabco.3  |-  ( ph  ->  G : A --> C )
ofoprabco.4  |-  ( ph  ->  A  e.  V )
ofoprabco.5  |-  ( ph  ->  M  =  ( a  e.  A  |->  <. ( F `  a ) ,  ( G `  a ) >. )
)
ofoprabco.6  |-  ( ph  ->  N  =  ( x  e.  B ,  y  e.  C  |->  ( x R y ) ) )
Assertion
Ref Expression
ofoprabco  |-  ( ph  ->  ( F  oF R G )  =  ( N  o.  M
) )
Distinct variable groups:    x, a,
y, A    B, a, x, y    C, a, x, y    F, a, x, y    G, a, x, y    N, a    R, a, x, y    ph, a, x, y
Allowed substitution hints:    M( x, y, a)    N( x, y)    V( x, y, a)

Proof of Theorem ofoprabco
StepHypRef Expression
1 ofoprabco.5 . . . . . 6  |-  ( ph  ->  M  =  ( a  e.  A  |->  <. ( F `  a ) ,  ( G `  a ) >. )
)
2 ofoprabco.2 . . . . . . . 8  |-  ( ph  ->  F : A --> B )
32ffvelrnda 6359 . . . . . . 7  |-  ( (
ph  /\  a  e.  A )  ->  ( F `  a )  e.  B )
4 ofoprabco.3 . . . . . . . 8  |-  ( ph  ->  G : A --> C )
54ffvelrnda 6359 . . . . . . 7  |-  ( (
ph  /\  a  e.  A )  ->  ( G `  a )  e.  C )
6 opelxpi 5148 . . . . . . 7  |-  ( ( ( F `  a
)  e.  B  /\  ( G `  a )  e.  C )  ->  <. ( F `  a
) ,  ( G `
 a ) >.  e.  ( B  X.  C
) )
73, 5, 6syl2anc 693 . . . . . 6  |-  ( (
ph  /\  a  e.  A )  ->  <. ( F `  a ) ,  ( G `  a ) >.  e.  ( B  X.  C ) )
81, 7fvmpt2d 6293 . . . . 5  |-  ( (
ph  /\  a  e.  A )  ->  ( M `  a )  =  <. ( F `  a ) ,  ( G `  a )
>. )
98fveq2d 6195 . . . 4  |-  ( (
ph  /\  a  e.  A )  ->  ( N `  ( M `  a ) )  =  ( N `  <. ( F `  a ) ,  ( G `  a ) >. )
)
10 df-ov 6653 . . . . 5  |-  ( ( F `  a ) N ( G `  a ) )  =  ( N `  <. ( F `  a ) ,  ( G `  a ) >. )
1110a1i 11 . . . 4  |-  ( (
ph  /\  a  e.  A )  ->  (
( F `  a
) N ( G `
 a ) )  =  ( N `  <. ( F `  a
) ,  ( G `
 a ) >.
) )
12 ofoprabco.6 . . . . . 6  |-  ( ph  ->  N  =  ( x  e.  B ,  y  e.  C  |->  ( x R y ) ) )
1312adantr 481 . . . . 5  |-  ( (
ph  /\  a  e.  A )  ->  N  =  ( x  e.  B ,  y  e.  C  |->  ( x R y ) ) )
14 simprl 794 . . . . . 6  |-  ( ( ( ph  /\  a  e.  A )  /\  (
x  =  ( F `
 a )  /\  y  =  ( G `  a ) ) )  ->  x  =  ( F `  a ) )
15 simprr 796 . . . . . 6  |-  ( ( ( ph  /\  a  e.  A )  /\  (
x  =  ( F `
 a )  /\  y  =  ( G `  a ) ) )  ->  y  =  ( G `  a ) )
1614, 15oveq12d 6668 . . . . 5  |-  ( ( ( ph  /\  a  e.  A )  /\  (
x  =  ( F `
 a )  /\  y  =  ( G `  a ) ) )  ->  ( x R y )  =  ( ( F `  a
) R ( G `
 a ) ) )
17 ovexd 6680 . . . . 5  |-  ( (
ph  /\  a  e.  A )  ->  (
( F `  a
) R ( G `
 a ) )  e.  _V )
1813, 16, 3, 5, 17ovmpt2d 6788 . . . 4  |-  ( (
ph  /\  a  e.  A )  ->  (
( F `  a
) N ( G `
 a ) )  =  ( ( F `
 a ) R ( G `  a
) ) )
199, 11, 183eqtr2d 2662 . . 3  |-  ( (
ph  /\  a  e.  A )  ->  ( N `  ( M `  a ) )  =  ( ( F `  a ) R ( G `  a ) ) )
2019mpteq2dva 4744 . 2  |-  ( ph  ->  ( a  e.  A  |->  ( N `  ( M `  a )
) )  =  ( a  e.  A  |->  ( ( F `  a
) R ( G `
 a ) ) ) )
21 ovex 6678 . . . . . 6  |-  ( x R y )  e. 
_V
2221rgen2w 2925 . . . . 5  |-  A. x  e.  B  A. y  e.  C  ( x R y )  e. 
_V
23 eqid 2622 . . . . . 6  |-  ( x  e.  B ,  y  e.  C  |->  ( x R y ) )  =  ( x  e.  B ,  y  e.  C  |->  ( x R y ) )
2423fmpt2 7237 . . . . 5  |-  ( A. x  e.  B  A. y  e.  C  (
x R y )  e.  _V  <->  ( x  e.  B ,  y  e.  C  |->  ( x R y ) ) : ( B  X.  C
) --> _V )
2522, 24mpbi 220 . . . 4  |-  ( x  e.  B ,  y  e.  C  |->  ( x R y ) ) : ( B  X.  C ) --> _V
2612feq1d 6030 . . . 4  |-  ( ph  ->  ( N : ( B  X.  C ) --> _V  <->  ( x  e.  B ,  y  e.  C  |->  ( x R y ) ) : ( B  X.  C
) --> _V ) )
2725, 26mpbiri 248 . . 3  |-  ( ph  ->  N : ( B  X.  C ) --> _V )
281, 7fmpt3d 6386 . . 3  |-  ( ph  ->  M : A --> ( B  X.  C ) )
29 ofoprabco.1 . . . 4  |-  F/_ a M
3029fcomptf 29458 . . 3  |-  ( ( N : ( B  X.  C ) --> _V 
/\  M : A --> ( B  X.  C
) )  ->  ( N  o.  M )  =  ( a  e.  A  |->  ( N `  ( M `  a ) ) ) )
3127, 28, 30syl2anc 693 . 2  |-  ( ph  ->  ( N  o.  M
)  =  ( a  e.  A  |->  ( N `
 ( M `  a ) ) ) )
32 ofoprabco.4 . . 3  |-  ( ph  ->  A  e.  V )
332feqmptd 6249 . . 3  |-  ( ph  ->  F  =  ( a  e.  A  |->  ( F `
 a ) ) )
344feqmptd 6249 . . 3  |-  ( ph  ->  G  =  ( a  e.  A  |->  ( G `
 a ) ) )
3532, 3, 5, 33, 34offval2 6914 . 2  |-  ( ph  ->  ( F  oF R G )  =  ( a  e.  A  |->  ( ( F `  a ) R ( G `  a ) ) ) )
3620, 31, 353eqtr4rd 2667 1  |-  ( ph  ->  ( F  oF R G )  =  ( N  o.  M
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   F/_wnfc 2751   A.wral 2912   _Vcvv 3200   <.cop 4183    |-> cmpt 4729    X. cxp 5112    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    oFcof 6895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-1st 7168  df-2nd 7169
This theorem is referenced by:  ofpreima  29465  rrvadd  30514
  Copyright terms: Public domain W3C validator