| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndifsplit | Structured version Visualization version Unicode version | ||
| Description: Lemma for maducoeval2 20446. (Contributed by SO, 16-Jul-2018.) |
| Ref | Expression |
|---|---|
| mndifsplit.b |
|
| mndifsplit.0g |
|
| mndifsplit.pg |
|
| Ref | Expression |
|---|---|
| mndifsplit |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21 120 |
. . . 4
| |
| 2 | 1 | imp 445 |
. . 3
|
| 3 | 2 | 3ad2antl3 1225 |
. 2
|
| 4 | mndifsplit.b |
. . . . . 6
| |
| 5 | mndifsplit.pg |
. . . . . 6
| |
| 6 | mndifsplit.0g |
. . . . . 6
| |
| 7 | 4, 5, 6 | mndrid 17312 |
. . . . 5
|
| 8 | 7 | 3adant3 1081 |
. . . 4
|
| 9 | 8 | adantr 481 |
. . 3
|
| 10 | iftrue 4092 |
. . . . 5
| |
| 11 | iffalse 4095 |
. . . . 5
| |
| 12 | 10, 11 | oveqan12d 6669 |
. . . 4
|
| 13 | 12 | adantl 482 |
. . 3
|
| 14 | iftrue 4092 |
. . . . 5
| |
| 15 | 14 | orcs 409 |
. . . 4
|
| 16 | 15 | ad2antrl 764 |
. . 3
|
| 17 | 9, 13, 16 | 3eqtr4rd 2667 |
. 2
|
| 18 | 4, 5, 6 | mndlid 17311 |
. . . . 5
|
| 19 | 18 | 3adant3 1081 |
. . . 4
|
| 20 | 19 | adantr 481 |
. . 3
|
| 21 | iffalse 4095 |
. . . . 5
| |
| 22 | iftrue 4092 |
. . . . 5
| |
| 23 | 21, 22 | oveqan12d 6669 |
. . . 4
|
| 24 | 23 | adantl 482 |
. . 3
|
| 25 | 14 | olcs 410 |
. . . 4
|
| 26 | 25 | ad2antll 765 |
. . 3
|
| 27 | 20, 24, 26 | 3eqtr4rd 2667 |
. 2
|
| 28 | simp1 1061 |
. . . . 5
| |
| 29 | 4, 6 | mndidcl 17308 |
. . . . . 6
|
| 30 | 28, 29 | syl 17 |
. . . . 5
|
| 31 | 4, 5, 6 | mndlid 17311 |
. . . . 5
|
| 32 | 28, 30, 31 | syl2anc 693 |
. . . 4
|
| 33 | 32 | adantr 481 |
. . 3
|
| 34 | 21, 11 | oveqan12d 6669 |
. . . 4
|
| 35 | 34 | adantl 482 |
. . 3
|
| 36 | ioran 511 |
. . . . 5
| |
| 37 | iffalse 4095 |
. . . . 5
| |
| 38 | 36, 37 | sylbir 225 |
. . . 4
|
| 39 | 38 | adantl 482 |
. . 3
|
| 40 | 33, 35, 39 | 3eqtr4rd 2667 |
. 2
|
| 41 | 3, 17, 27, 40 | 4casesdan 991 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-riota 6611 df-ov 6653 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 |
| This theorem is referenced by: maducoeval2 20446 madugsum 20449 |
| Copyright terms: Public domain | W3C validator |