MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndifsplit Structured version   Visualization version   Unicode version

Theorem mndifsplit 20442
Description: Lemma for maducoeval2 20446. (Contributed by SO, 16-Jul-2018.)
Hypotheses
Ref Expression
mndifsplit.b  |-  B  =  ( Base `  M
)
mndifsplit.0g  |-  .0.  =  ( 0g `  M )
mndifsplit.pg  |-  .+  =  ( +g  `  M )
Assertion
Ref Expression
mndifsplit  |-  ( ( M  e.  Mnd  /\  A  e.  B  /\  -.  ( ph  /\  ps ) )  ->  if ( ( ph  \/  ps ) ,  A ,  .0.  )  =  ( if ( ph ,  A ,  .0.  )  .+  if ( ps ,  A ,  .0.  ) ) )

Proof of Theorem mndifsplit
StepHypRef Expression
1 pm2.21 120 . . . 4  |-  ( -.  ( ph  /\  ps )  ->  ( ( ph  /\ 
ps )  ->  if ( ( ph  \/  ps ) ,  A ,  .0.  )  =  ( if ( ph ,  A ,  .0.  )  .+  if ( ps ,  A ,  .0.  ) ) ) )
21imp 445 . . 3  |-  ( ( -.  ( ph  /\  ps )  /\  ( ph  /\  ps ) )  ->  if ( (
ph  \/  ps ) ,  A ,  .0.  )  =  ( if (
ph ,  A ,  .0.  )  .+  if ( ps ,  A ,  .0.  ) ) )
323ad2antl3 1225 . 2  |-  ( ( ( M  e.  Mnd  /\  A  e.  B  /\  -.  ( ph  /\  ps ) )  /\  ( ph  /\  ps ) )  ->  if ( (
ph  \/  ps ) ,  A ,  .0.  )  =  ( if (
ph ,  A ,  .0.  )  .+  if ( ps ,  A ,  .0.  ) ) )
4 mndifsplit.b . . . . . 6  |-  B  =  ( Base `  M
)
5 mndifsplit.pg . . . . . 6  |-  .+  =  ( +g  `  M )
6 mndifsplit.0g . . . . . 6  |-  .0.  =  ( 0g `  M )
74, 5, 6mndrid 17312 . . . . 5  |-  ( ( M  e.  Mnd  /\  A  e.  B )  ->  ( A  .+  .0.  )  =  A )
873adant3 1081 . . . 4  |-  ( ( M  e.  Mnd  /\  A  e.  B  /\  -.  ( ph  /\  ps ) )  ->  ( A  .+  .0.  )  =  A )
98adantr 481 . . 3  |-  ( ( ( M  e.  Mnd  /\  A  e.  B  /\  -.  ( ph  /\  ps ) )  /\  ( ph  /\  -.  ps )
)  ->  ( A  .+  .0.  )  =  A )
10 iftrue 4092 . . . . 5  |-  ( ph  ->  if ( ph ,  A ,  .0.  )  =  A )
11 iffalse 4095 . . . . 5  |-  ( -. 
ps  ->  if ( ps ,  A ,  .0.  )  =  .0.  )
1210, 11oveqan12d 6669 . . . 4  |-  ( (
ph  /\  -.  ps )  ->  ( if ( ph ,  A ,  .0.  )  .+  if ( ps ,  A ,  .0.  )
)  =  ( A 
.+  .0.  ) )
1312adantl 482 . . 3  |-  ( ( ( M  e.  Mnd  /\  A  e.  B  /\  -.  ( ph  /\  ps ) )  /\  ( ph  /\  -.  ps )
)  ->  ( if ( ph ,  A ,  .0.  )  .+  if ( ps ,  A ,  .0.  ) )  =  ( A  .+  .0.  )
)
14 iftrue 4092 . . . . 5  |-  ( (
ph  \/  ps )  ->  if ( ( ph  \/  ps ) ,  A ,  .0.  )  =  A )
1514orcs 409 . . . 4  |-  ( ph  ->  if ( ( ph  \/  ps ) ,  A ,  .0.  )  =  A )
1615ad2antrl 764 . . 3  |-  ( ( ( M  e.  Mnd  /\  A  e.  B  /\  -.  ( ph  /\  ps ) )  /\  ( ph  /\  -.  ps )
)  ->  if (
( ph  \/  ps ) ,  A ,  .0.  )  =  A
)
179, 13, 163eqtr4rd 2667 . 2  |-  ( ( ( M  e.  Mnd  /\  A  e.  B  /\  -.  ( ph  /\  ps ) )  /\  ( ph  /\  -.  ps )
)  ->  if (
( ph  \/  ps ) ,  A ,  .0.  )  =  ( if ( ph ,  A ,  .0.  )  .+  if ( ps ,  A ,  .0.  ) ) )
184, 5, 6mndlid 17311 . . . . 5  |-  ( ( M  e.  Mnd  /\  A  e.  B )  ->  (  .0.  .+  A
)  =  A )
19183adant3 1081 . . . 4  |-  ( ( M  e.  Mnd  /\  A  e.  B  /\  -.  ( ph  /\  ps ) )  ->  (  .0.  .+  A )  =  A )
2019adantr 481 . . 3  |-  ( ( ( M  e.  Mnd  /\  A  e.  B  /\  -.  ( ph  /\  ps ) )  /\  ( -.  ph  /\  ps )
)  ->  (  .0.  .+  A )  =  A )
21 iffalse 4095 . . . . 5  |-  ( -. 
ph  ->  if ( ph ,  A ,  .0.  )  =  .0.  )
22 iftrue 4092 . . . . 5  |-  ( ps 
->  if ( ps ,  A ,  .0.  )  =  A )
2321, 22oveqan12d 6669 . . . 4  |-  ( ( -.  ph  /\  ps )  ->  ( if ( ph ,  A ,  .0.  )  .+  if ( ps ,  A ,  .0.  )
)  =  (  .0.  .+  A ) )
2423adantl 482 . . 3  |-  ( ( ( M  e.  Mnd  /\  A  e.  B  /\  -.  ( ph  /\  ps ) )  /\  ( -.  ph  /\  ps )
)  ->  ( if ( ph ,  A ,  .0.  )  .+  if ( ps ,  A ,  .0.  ) )  =  (  .0.  .+  A )
)
2514olcs 410 . . . 4  |-  ( ps 
->  if ( ( ph  \/  ps ) ,  A ,  .0.  )  =  A )
2625ad2antll 765 . . 3  |-  ( ( ( M  e.  Mnd  /\  A  e.  B  /\  -.  ( ph  /\  ps ) )  /\  ( -.  ph  /\  ps )
)  ->  if (
( ph  \/  ps ) ,  A ,  .0.  )  =  A
)
2720, 24, 263eqtr4rd 2667 . 2  |-  ( ( ( M  e.  Mnd  /\  A  e.  B  /\  -.  ( ph  /\  ps ) )  /\  ( -.  ph  /\  ps )
)  ->  if (
( ph  \/  ps ) ,  A ,  .0.  )  =  ( if ( ph ,  A ,  .0.  )  .+  if ( ps ,  A ,  .0.  ) ) )
28 simp1 1061 . . . . 5  |-  ( ( M  e.  Mnd  /\  A  e.  B  /\  -.  ( ph  /\  ps ) )  ->  M  e.  Mnd )
294, 6mndidcl 17308 . . . . . 6  |-  ( M  e.  Mnd  ->  .0.  e.  B )
3028, 29syl 17 . . . . 5  |-  ( ( M  e.  Mnd  /\  A  e.  B  /\  -.  ( ph  /\  ps ) )  ->  .0.  e.  B )
314, 5, 6mndlid 17311 . . . . 5  |-  ( ( M  e.  Mnd  /\  .0.  e.  B )  -> 
(  .0.  .+  .0.  )  =  .0.  )
3228, 30, 31syl2anc 693 . . . 4  |-  ( ( M  e.  Mnd  /\  A  e.  B  /\  -.  ( ph  /\  ps ) )  ->  (  .0.  .+  .0.  )  =  .0.  )
3332adantr 481 . . 3  |-  ( ( ( M  e.  Mnd  /\  A  e.  B  /\  -.  ( ph  /\  ps ) )  /\  ( -.  ph  /\  -.  ps ) )  ->  (  .0.  .+  .0.  )  =  .0.  )
3421, 11oveqan12d 6669 . . . 4  |-  ( ( -.  ph  /\  -.  ps )  ->  ( if (
ph ,  A ,  .0.  )  .+  if ( ps ,  A ,  .0.  ) )  =  (  .0.  .+  .0.  )
)
3534adantl 482 . . 3  |-  ( ( ( M  e.  Mnd  /\  A  e.  B  /\  -.  ( ph  /\  ps ) )  /\  ( -.  ph  /\  -.  ps ) )  ->  ( if ( ph ,  A ,  .0.  )  .+  if ( ps ,  A ,  .0.  ) )  =  (  .0.  .+  .0.  )
)
36 ioran 511 . . . . 5  |-  ( -.  ( ph  \/  ps ) 
<->  ( -.  ph  /\  -.  ps ) )
37 iffalse 4095 . . . . 5  |-  ( -.  ( ph  \/  ps )  ->  if ( (
ph  \/  ps ) ,  A ,  .0.  )  =  .0.  )
3836, 37sylbir 225 . . . 4  |-  ( ( -.  ph  /\  -.  ps )  ->  if ( (
ph  \/  ps ) ,  A ,  .0.  )  =  .0.  )
3938adantl 482 . . 3  |-  ( ( ( M  e.  Mnd  /\  A  e.  B  /\  -.  ( ph  /\  ps ) )  /\  ( -.  ph  /\  -.  ps ) )  ->  if ( ( ph  \/  ps ) ,  A ,  .0.  )  =  .0.  )
4033, 35, 393eqtr4rd 2667 . 2  |-  ( ( ( M  e.  Mnd  /\  A  e.  B  /\  -.  ( ph  /\  ps ) )  /\  ( -.  ph  /\  -.  ps ) )  ->  if ( ( ph  \/  ps ) ,  A ,  .0.  )  =  ( if ( ph ,  A ,  .0.  )  .+  if ( ps ,  A ,  .0.  ) ) )
413, 17, 27, 404casesdan 991 1  |-  ( ( M  e.  Mnd  /\  A  e.  B  /\  -.  ( ph  /\  ps ) )  ->  if ( ( ph  \/  ps ) ,  A ,  .0.  )  =  ( if ( ph ,  A ,  .0.  )  .+  if ( ps ,  A ,  .0.  ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   ifcif 4086   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Mndcmnd 17294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-riota 6611  df-ov 6653  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295
This theorem is referenced by:  maducoeval2  20446  madugsum  20449
  Copyright terms: Public domain W3C validator