MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsum00 Structured version   Visualization version   Unicode version

Theorem fsum00 14530
Description: A sum of nonnegative numbers is zero iff all terms are zero. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumge0.1  |-  ( ph  ->  A  e.  Fin )
fsumge0.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
fsumge0.3  |-  ( (
ph  /\  k  e.  A )  ->  0  <_  B )
Assertion
Ref Expression
fsum00  |-  ( ph  ->  ( sum_ k  e.  A  B  =  0  <->  A. k  e.  A  B  = 
0 ) )
Distinct variable groups:    A, k    ph, k
Allowed substitution hint:    B( k)

Proof of Theorem fsum00
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 fsumge0.1 . . . . . . . . . 10  |-  ( ph  ->  A  e.  Fin )
21adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  A )  ->  A  e.  Fin )
3 fsumge0.2 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
43adantlr 751 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  A )  /\  k  e.  A )  ->  B  e.  RR )
5 fsumge0.3 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  0  <_  B )
65adantlr 751 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  A )  /\  k  e.  A )  ->  0  <_  B )
7 snssi 4339 . . . . . . . . . 10  |-  ( m  e.  A  ->  { m }  C_  A )
87adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  A )  ->  { m }  C_  A )
92, 4, 6, 8fsumless 14528 . . . . . . . 8  |-  ( (
ph  /\  m  e.  A )  ->  sum_ k  e.  { m } B  <_ 
sum_ k  e.  A  B )
109adantlr 751 . . . . . . 7  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  -> 
sum_ k  e.  {
m } B  <_  sum_ k  e.  A  B
)
11 simpr 477 . . . . . . . 8  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  m  e.  A )
123, 5jca 554 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  ( B  e.  RR  /\  0  <_  B ) )
1312ralrimiva 2966 . . . . . . . . . . . 12  |-  ( ph  ->  A. k  e.  A  ( B  e.  RR  /\  0  <_  B )
)
1413adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  sum_ k  e.  A  B  =  0 )  ->  A. k  e.  A  ( B  e.  RR  /\  0  <_  B ) )
15 nfcsb1v 3549 . . . . . . . . . . . . . 14  |-  F/_ k [_ m  /  k ]_ B
1615nfel1 2779 . . . . . . . . . . . . 13  |-  F/ k
[_ m  /  k ]_ B  e.  RR
17 nfcv 2764 . . . . . . . . . . . . . 14  |-  F/_ k
0
18 nfcv 2764 . . . . . . . . . . . . . 14  |-  F/_ k  <_
1917, 18, 15nfbr 4699 . . . . . . . . . . . . 13  |-  F/ k 0  <_  [_ m  / 
k ]_ B
2016, 19nfan 1828 . . . . . . . . . . . 12  |-  F/ k ( [_ m  / 
k ]_ B  e.  RR  /\  0  <_  [_ m  / 
k ]_ B )
21 csbeq1a 3542 . . . . . . . . . . . . . 14  |-  ( k  =  m  ->  B  =  [_ m  /  k ]_ B )
2221eleq1d 2686 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  ( B  e.  RR  <->  [_ m  / 
k ]_ B  e.  RR ) )
2321breq2d 4665 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  (
0  <_  B  <->  0  <_  [_ m  /  k ]_ B ) )
2422, 23anbi12d 747 . . . . . . . . . . . 12  |-  ( k  =  m  ->  (
( B  e.  RR  /\  0  <_  B )  <->  (
[_ m  /  k ]_ B  e.  RR  /\  0  <_  [_ m  / 
k ]_ B ) ) )
2520, 24rspc 3303 . . . . . . . . . . 11  |-  ( m  e.  A  ->  ( A. k  e.  A  ( B  e.  RR  /\  0  <_  B )  ->  ( [_ m  / 
k ]_ B  e.  RR  /\  0  <_  [_ m  / 
k ]_ B ) ) )
2614, 25mpan9 486 . . . . . . . . . 10  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  ( [_ m  / 
k ]_ B  e.  RR  /\  0  <_  [_ m  / 
k ]_ B ) )
2726simpld 475 . . . . . . . . 9  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  [_ m  /  k ]_ B  e.  RR )
2827recnd 10068 . . . . . . . 8  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  [_ m  /  k ]_ B  e.  CC )
29 sumsns 14479 . . . . . . . 8  |-  ( ( m  e.  A  /\  [_ m  /  k ]_ B  e.  CC )  -> 
sum_ k  e.  {
m } B  = 
[_ m  /  k ]_ B )
3011, 28, 29syl2anc 693 . . . . . . 7  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  -> 
sum_ k  e.  {
m } B  = 
[_ m  /  k ]_ B )
31 simplr 792 . . . . . . 7  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  -> 
sum_ k  e.  A  B  =  0 )
3210, 30, 313brtr3d 4684 . . . . . 6  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  [_ m  /  k ]_ B  <_  0 )
3326simprd 479 . . . . . 6  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  0  <_  [_ m  / 
k ]_ B )
34 0re 10040 . . . . . . 7  |-  0  e.  RR
35 letri3 10123 . . . . . . 7  |-  ( (
[_ m  /  k ]_ B  e.  RR  /\  0  e.  RR )  ->  ( [_ m  /  k ]_ B  =  0  <->  ( [_ m  /  k ]_ B  <_  0  /\  0  <_  [_ m  /  k ]_ B ) ) )
3627, 34, 35sylancl 694 . . . . . 6  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  ( [_ m  / 
k ]_ B  =  0  <-> 
( [_ m  /  k ]_ B  <_  0  /\  0  <_  [_ m  / 
k ]_ B ) ) )
3732, 33, 36mpbir2and 957 . . . . 5  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  [_ m  /  k ]_ B  =  0
)
3837ralrimiva 2966 . . . 4  |-  ( (
ph  /\  sum_ k  e.  A  B  =  0 )  ->  A. m  e.  A  [_ m  / 
k ]_ B  =  0 )
39 nfv 1843 . . . . 5  |-  F/ m  B  =  0
4015nfeq1 2778 . . . . 5  |-  F/ k
[_ m  /  k ]_ B  =  0
4121eqeq1d 2624 . . . . 5  |-  ( k  =  m  ->  ( B  =  0  <->  [_ m  / 
k ]_ B  =  0 ) )
4239, 40, 41cbvral 3167 . . . 4  |-  ( A. k  e.  A  B  =  0  <->  A. m  e.  A  [_ m  / 
k ]_ B  =  0 )
4338, 42sylibr 224 . . 3  |-  ( (
ph  /\  sum_ k  e.  A  B  =  0 )  ->  A. k  e.  A  B  = 
0 )
4443ex 450 . 2  |-  ( ph  ->  ( sum_ k  e.  A  B  =  0  ->  A. k  e.  A  B  =  0 ) )
45 sumz 14453 . . . . 5  |-  ( ( A  C_  ( ZZ>= ` 
0 )  \/  A  e.  Fin )  ->  sum_ k  e.  A  0  = 
0 )
4645olcs 410 . . . 4  |-  ( A  e.  Fin  ->  sum_ k  e.  A  0  = 
0 )
47 sumeq2 14424 . . . . 5  |-  ( A. k  e.  A  B  =  0  ->  sum_ k  e.  A  B  =  sum_ k  e.  A  0 )
4847eqeq1d 2624 . . . 4  |-  ( A. k  e.  A  B  =  0  ->  ( sum_ k  e.  A  B  =  0  <->  sum_ k  e.  A  0  =  0 ) )
4946, 48syl5ibrcom 237 . . 3  |-  ( A  e.  Fin  ->  ( A. k  e.  A  B  =  0  ->  sum_ k  e.  A  B  =  0 ) )
501, 49syl 17 . 2  |-  ( ph  ->  ( A. k  e.  A  B  =  0  ->  sum_ k  e.  A  B  =  0 ) )
5144, 50impbid 202 1  |-  ( ph  ->  ( sum_ k  e.  A  B  =  0  <->  A. k  e.  A  B  = 
0 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   [_csb 3533    C_ wss 3574   {csn 4177   class class class wbr 4653   ` cfv 5888   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936    <_ cle 10075   ZZ>=cuz 11687   sum_csu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417
This theorem is referenced by:  ramcl  15733  rrxcph  23180  rrxmet  23191  jensen  24715  eqeelen  25784  axcgrid  25796  rrnmet  33628
  Copyright terms: Public domain W3C validator