Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indsumin Structured version   Visualization version   Unicode version

Theorem indsumin 30084
Description: Finite sum of a product with the indicator function / Cartesian product with the indicator function. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
indsumin.1  |-  ( ph  ->  O  e.  V )
indsumin.2  |-  ( ph  ->  A  e.  Fin )
indsumin.3  |-  ( ph  ->  A  C_  O )
indsumin.4  |-  ( ph  ->  B  C_  O )
indsumin.5  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
Assertion
Ref Expression
indsumin  |-  ( ph  -> 
sum_ k  e.  A  ( ( ( (𝟭 `  O ) `  B
) `  k )  x.  C )  =  sum_ k  e.  ( A  i^i  B ) C )
Distinct variable groups:    A, k    B, k    k, O    ph, k
Allowed substitution hints:    C( k)    V( k)

Proof of Theorem indsumin
StepHypRef Expression
1 inindif 29353 . . . 4  |-  ( ( A  i^i  B )  i^i  ( A  \  B ) )  =  (/)
21a1i 11 . . 3  |-  ( ph  ->  ( ( A  i^i  B )  i^i  ( A 
\  B ) )  =  (/) )
3 inundif 4046 . . . . 5  |-  ( ( A  i^i  B )  u.  ( A  \  B ) )  =  A
43eqcomi 2631 . . . 4  |-  A  =  ( ( A  i^i  B )  u.  ( A 
\  B ) )
54a1i 11 . . 3  |-  ( ph  ->  A  =  ( ( A  i^i  B )  u.  ( A  \  B ) ) )
6 indsumin.2 . . 3  |-  ( ph  ->  A  e.  Fin )
7 pr01ssre 29570 . . . . . 6  |-  { 0 ,  1 }  C_  RR
8 ax-resscn 9993 . . . . . 6  |-  RR  C_  CC
97, 8sstri 3612 . . . . 5  |-  { 0 ,  1 }  C_  CC
10 indsumin.1 . . . . . . . 8  |-  ( ph  ->  O  e.  V )
11 indsumin.4 . . . . . . . 8  |-  ( ph  ->  B  C_  O )
12 indf 30077 . . . . . . . 8  |-  ( ( O  e.  V  /\  B  C_  O )  -> 
( (𝟭 `  O ) `  B ) : O --> { 0 ,  1 } )
1310, 11, 12syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( (𝟭 `  O
) `  B ) : O --> { 0 ,  1 } )
1413adantr 481 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  (
(𝟭 `  O ) `  B ) : O --> { 0 ,  1 } )
15 indsumin.3 . . . . . . 7  |-  ( ph  ->  A  C_  O )
1615sselda 3603 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  k  e.  O )
1714, 16ffvelrnd 6360 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  (
( (𝟭 `  O ) `  B ) `  k
)  e.  { 0 ,  1 } )
189, 17sseldi 3601 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  (
( (𝟭 `  O ) `  B ) `  k
)  e.  CC )
19 indsumin.5 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
2018, 19mulcld 10060 . . 3  |-  ( (
ph  /\  k  e.  A )  ->  (
( ( (𝟭 `  O
) `  B ) `  k )  x.  C
)  e.  CC )
212, 5, 6, 20fsumsplit 14471 . 2  |-  ( ph  -> 
sum_ k  e.  A  ( ( ( (𝟭 `  O ) `  B
) `  k )  x.  C )  =  (
sum_ k  e.  ( A  i^i  B ) ( ( ( (𝟭 `  O ) `  B
) `  k )  x.  C )  +  sum_ k  e.  ( A  \  B ) ( ( ( (𝟭 `  O
) `  B ) `  k )  x.  C
) ) )
2210adantr 481 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( A  i^i  B ) )  ->  O  e.  V )
2311adantr 481 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( A  i^i  B ) )  ->  B  C_  O
)
24 inss2 3834 . . . . . . . . 9  |-  ( A  i^i  B )  C_  B
2524a1i 11 . . . . . . . 8  |-  ( ph  ->  ( A  i^i  B
)  C_  B )
2625sselda 3603 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( A  i^i  B ) )  ->  k  e.  B )
27 ind1 30079 . . . . . . 7  |-  ( ( O  e.  V  /\  B  C_  O  /\  k  e.  B )  ->  (
( (𝟭 `  O ) `  B ) `  k
)  =  1 )
2822, 23, 26, 27syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  k  e.  ( A  i^i  B ) )  ->  ( (
(𝟭 `  O ) `  B ) `  k
)  =  1 )
2928oveq1d 6665 . . . . 5  |-  ( (
ph  /\  k  e.  ( A  i^i  B ) )  ->  ( (
( (𝟭 `  O ) `  B ) `  k
)  x.  C )  =  ( 1  x.  C ) )
30 inss1 3833 . . . . . . . . 9  |-  ( A  i^i  B )  C_  A
3130a1i 11 . . . . . . . 8  |-  ( ph  ->  ( A  i^i  B
)  C_  A )
3231sselda 3603 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( A  i^i  B ) )  ->  k  e.  A )
3332, 19syldan 487 . . . . . 6  |-  ( (
ph  /\  k  e.  ( A  i^i  B ) )  ->  C  e.  CC )
3433mulid2d 10058 . . . . 5  |-  ( (
ph  /\  k  e.  ( A  i^i  B ) )  ->  ( 1  x.  C )  =  C )
3529, 34eqtrd 2656 . . . 4  |-  ( (
ph  /\  k  e.  ( A  i^i  B ) )  ->  ( (
( (𝟭 `  O ) `  B ) `  k
)  x.  C )  =  C )
3635sumeq2dv 14433 . . 3  |-  ( ph  -> 
sum_ k  e.  ( A  i^i  B ) ( ( ( (𝟭 `  O ) `  B
) `  k )  x.  C )  =  sum_ k  e.  ( A  i^i  B ) C )
3710adantr 481 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( A  \  B ) )  ->  O  e.  V )
3811adantr 481 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( A  \  B ) )  ->  B  C_  O
)
3915ssdifd 3746 . . . . . . . . 9  |-  ( ph  ->  ( A  \  B
)  C_  ( O  \  B ) )
4039sselda 3603 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( A  \  B ) )  ->  k  e.  ( O  \  B ) )
41 ind0 30080 . . . . . . . 8  |-  ( ( O  e.  V  /\  B  C_  O  /\  k  e.  ( O  \  B
) )  ->  (
( (𝟭 `  O ) `  B ) `  k
)  =  0 )
4237, 38, 40, 41syl3anc 1326 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( A  \  B ) )  ->  ( (
(𝟭 `  O ) `  B ) `  k
)  =  0 )
4342oveq1d 6665 . . . . . 6  |-  ( (
ph  /\  k  e.  ( A  \  B ) )  ->  ( (
( (𝟭 `  O ) `  B ) `  k
)  x.  C )  =  ( 0  x.  C ) )
44 difssd 3738 . . . . . . . . 9  |-  ( ph  ->  ( A  \  B
)  C_  A )
4544sselda 3603 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( A  \  B ) )  ->  k  e.  A )
4645, 19syldan 487 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( A  \  B ) )  ->  C  e.  CC )
4746mul02d 10234 . . . . . 6  |-  ( (
ph  /\  k  e.  ( A  \  B ) )  ->  ( 0  x.  C )  =  0 )
4843, 47eqtrd 2656 . . . . 5  |-  ( (
ph  /\  k  e.  ( A  \  B ) )  ->  ( (
( (𝟭 `  O ) `  B ) `  k
)  x.  C )  =  0 )
4948sumeq2dv 14433 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( A  \  B ) ( ( ( (𝟭 `  O ) `  B
) `  k )  x.  C )  =  sum_ k  e.  ( A  \  B ) 0 )
50 diffi 8192 . . . . . 6  |-  ( A  e.  Fin  ->  ( A  \  B )  e. 
Fin )
516, 50syl 17 . . . . 5  |-  ( ph  ->  ( A  \  B
)  e.  Fin )
52 sumz 14453 . . . . . 6  |-  ( ( ( A  \  B
)  C_  ( ZZ>= ` 
0 )  \/  ( A  \  B )  e. 
Fin )  ->  sum_ k  e.  ( A  \  B
) 0  =  0 )
5352olcs 410 . . . . 5  |-  ( ( A  \  B )  e.  Fin  ->  sum_ k  e.  ( A  \  B
) 0  =  0 )
5451, 53syl 17 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( A  \  B ) 0  =  0 )
5549, 54eqtrd 2656 . . 3  |-  ( ph  -> 
sum_ k  e.  ( A  \  B ) ( ( ( (𝟭 `  O ) `  B
) `  k )  x.  C )  =  0 )
5636, 55oveq12d 6668 . 2  |-  ( ph  ->  ( sum_ k  e.  ( A  i^i  B ) ( ( ( (𝟭 `  O ) `  B
) `  k )  x.  C )  +  sum_ k  e.  ( A  \  B ) ( ( ( (𝟭 `  O
) `  B ) `  k )  x.  C
) )  =  (
sum_ k  e.  ( A  i^i  B ) C  +  0 ) )
57 infi 8184 . . . . 5  |-  ( A  e.  Fin  ->  ( A  i^i  B )  e. 
Fin )
586, 57syl 17 . . . 4  |-  ( ph  ->  ( A  i^i  B
)  e.  Fin )
5958, 33fsumcl 14464 . . 3  |-  ( ph  -> 
sum_ k  e.  ( A  i^i  B ) C  e.  CC )
6059addid1d 10236 . 2  |-  ( ph  ->  ( sum_ k  e.  ( A  i^i  B ) C  +  0 )  =  sum_ k  e.  ( A  i^i  B ) C )
6121, 56, 603eqtrd 2660 1  |-  ( ph  -> 
sum_ k  e.  A  ( ( ( (𝟭 `  O ) `  B
) `  k )  x.  C )  =  sum_ k  e.  ( A  i^i  B ) C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {cpr 4179   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   ZZ>=cuz 11687   sum_csu 14416  𝟭cind 30072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-ind 30073
This theorem is referenced by:  breprexpnat  30712
  Copyright terms: Public domain W3C validator