| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0nn0 | Structured version Visualization version Unicode version | ||
| Description: 0 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| 0nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2622 |
. 2
| |
| 2 | elnn0 11294 |
. . . 4
| |
| 3 | 2 | biimpri 218 |
. . 3
|
| 4 | 3 | olcs 410 |
. 2
|
| 5 | 1, 4 | ax-mp 5 |
1
|
| Copyright terms: Public domain | W3C validator |