Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omndadd2d Structured version   Visualization version   Unicode version

Theorem omndadd2d 29708
Description: In a commutative left ordered monoid, the ordering is compatible with monoid addition. Double addition version. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
omndadd.0  |-  B  =  ( Base `  M
)
omndadd.1  |-  .<_  =  ( le `  M )
omndadd.2  |-  .+  =  ( +g  `  M )
omndadd2d.m  |-  ( ph  ->  M  e. oMnd )
omndadd2d.w  |-  ( ph  ->  W  e.  B )
omndadd2d.x  |-  ( ph  ->  X  e.  B )
omndadd2d.y  |-  ( ph  ->  Y  e.  B )
omndadd2d.z  |-  ( ph  ->  Z  e.  B )
omndadd2d.1  |-  ( ph  ->  X  .<_  Z )
omndadd2d.2  |-  ( ph  ->  Y  .<_  W )
omndadd2d.c  |-  ( ph  ->  M  e. CMnd )
Assertion
Ref Expression
omndadd2d  |-  ( ph  ->  ( X  .+  Y
)  .<_  ( Z  .+  W ) )

Proof of Theorem omndadd2d
StepHypRef Expression
1 omndadd2d.m . . 3  |-  ( ph  ->  M  e. oMnd )
2 omndtos 29705 . . 3  |-  ( M  e. oMnd  ->  M  e. Toset )
3 tospos 29658 . . 3  |-  ( M  e. Toset  ->  M  e.  Poset )
41, 2, 33syl 18 . 2  |-  ( ph  ->  M  e.  Poset )
5 omndmnd 29704 . . . . 5  |-  ( M  e. oMnd  ->  M  e.  Mnd )
61, 5syl 17 . . . 4  |-  ( ph  ->  M  e.  Mnd )
7 omndadd2d.x . . . 4  |-  ( ph  ->  X  e.  B )
8 omndadd2d.y . . . 4  |-  ( ph  ->  Y  e.  B )
9 omndadd.0 . . . . 5  |-  B  =  ( Base `  M
)
10 omndadd.2 . . . . 5  |-  .+  =  ( +g  `  M )
119, 10mndcl 17301 . . . 4  |-  ( ( M  e.  Mnd  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y
)  e.  B )
126, 7, 8, 11syl3anc 1326 . . 3  |-  ( ph  ->  ( X  .+  Y
)  e.  B )
13 omndadd2d.z . . . 4  |-  ( ph  ->  Z  e.  B )
149, 10mndcl 17301 . . . 4  |-  ( ( M  e.  Mnd  /\  Z  e.  B  /\  Y  e.  B )  ->  ( Z  .+  Y
)  e.  B )
156, 13, 8, 14syl3anc 1326 . . 3  |-  ( ph  ->  ( Z  .+  Y
)  e.  B )
16 omndadd2d.w . . . 4  |-  ( ph  ->  W  e.  B )
179, 10mndcl 17301 . . . 4  |-  ( ( M  e.  Mnd  /\  Z  e.  B  /\  W  e.  B )  ->  ( Z  .+  W
)  e.  B )
186, 13, 16, 17syl3anc 1326 . . 3  |-  ( ph  ->  ( Z  .+  W
)  e.  B )
1912, 15, 183jca 1242 . 2  |-  ( ph  ->  ( ( X  .+  Y )  e.  B  /\  ( Z  .+  Y
)  e.  B  /\  ( Z  .+  W )  e.  B ) )
20 omndadd2d.1 . . 3  |-  ( ph  ->  X  .<_  Z )
21 omndadd.1 . . . 4  |-  .<_  =  ( le `  M )
229, 21, 10omndadd 29706 . . 3  |-  ( ( M  e. oMnd  /\  ( X  e.  B  /\  Z  e.  B  /\  Y  e.  B )  /\  X  .<_  Z )  ->  ( X  .+  Y )  .<_  ( Z 
.+  Y ) )
231, 7, 13, 8, 20, 22syl131anc 1339 . 2  |-  ( ph  ->  ( X  .+  Y
)  .<_  ( Z  .+  Y ) )
24 omndadd2d.2 . . . 4  |-  ( ph  ->  Y  .<_  W )
259, 21, 10omndadd 29706 . . . 4  |-  ( ( M  e. oMnd  /\  ( Y  e.  B  /\  W  e.  B  /\  Z  e.  B )  /\  Y  .<_  W )  ->  ( Y  .+  Z )  .<_  ( W 
.+  Z ) )
261, 8, 16, 13, 24, 25syl131anc 1339 . . 3  |-  ( ph  ->  ( Y  .+  Z
)  .<_  ( W  .+  Z ) )
27 omndadd2d.c . . . 4  |-  ( ph  ->  M  e. CMnd )
289, 10cmncom 18209 . . . 4  |-  ( ( M  e. CMnd  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  .+  Z )  =  ( Z  .+  Y
) )
2927, 8, 13, 28syl3anc 1326 . . 3  |-  ( ph  ->  ( Y  .+  Z
)  =  ( Z 
.+  Y ) )
309, 10cmncom 18209 . . . 4  |-  ( ( M  e. CMnd  /\  W  e.  B  /\  Z  e.  B )  ->  ( W  .+  Z )  =  ( Z  .+  W
) )
3127, 16, 13, 30syl3anc 1326 . . 3  |-  ( ph  ->  ( W  .+  Z
)  =  ( Z 
.+  W ) )
3226, 29, 313brtr3d 4684 . 2  |-  ( ph  ->  ( Z  .+  Y
)  .<_  ( Z  .+  W ) )
339, 21postr 16953 . . 3  |-  ( ( M  e.  Poset  /\  (
( X  .+  Y
)  e.  B  /\  ( Z  .+  Y )  e.  B  /\  ( Z  .+  W )  e.  B ) )  -> 
( ( ( X 
.+  Y )  .<_  ( Z  .+  Y )  /\  ( Z  .+  Y )  .<_  ( Z 
.+  W ) )  ->  ( X  .+  Y )  .<_  ( Z 
.+  W ) ) )
3433imp 445 . 2  |-  ( ( ( M  e.  Poset  /\  ( ( X  .+  Y )  e.  B  /\  ( Z  .+  Y
)  e.  B  /\  ( Z  .+  W )  e.  B ) )  /\  ( ( X 
.+  Y )  .<_  ( Z  .+  Y )  /\  ( Z  .+  Y )  .<_  ( Z 
.+  W ) ) )  ->  ( X  .+  Y )  .<_  ( Z 
.+  W ) )
354, 19, 23, 32, 34syl22anc 1327 1  |-  ( ph  ->  ( X  .+  Y
)  .<_  ( Z  .+  W ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   lecple 15948   Posetcpo 16940  Tosetctos 17033   Mndcmnd 17294  CMndccmn 18193  oMndcomnd 29697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-poset 16946  df-toset 17034  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-cmn 18195  df-omnd 29699
This theorem is referenced by:  omndmul  29714  gsumle  29779
  Copyright terms: Public domain W3C validator