Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omndmnd Structured version   Visualization version   Unicode version

Theorem omndmnd 29704
Description: A left ordered monoid is a monoid. (Contributed by Thierry Arnoux, 13-Mar-2018.)
Assertion
Ref Expression
omndmnd  |-  ( M  e. oMnd  ->  M  e.  Mnd )

Proof of Theorem omndmnd
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3  |-  ( Base `  M )  =  (
Base `  M )
2 eqid 2622 . . 3  |-  ( +g  `  M )  =  ( +g  `  M )
3 eqid 2622 . . 3  |-  ( le
`  M )  =  ( le `  M
)
41, 2, 3isomnd 29701 . 2  |-  ( M  e. oMnd 
<->  ( M  e.  Mnd  /\  M  e. Toset  /\  A. a  e.  ( Base `  M
) A. b  e.  ( Base `  M
) A. c  e.  ( Base `  M
) ( a ( le `  M ) b  ->  ( a
( +g  `  M ) c ) ( le
`  M ) ( b ( +g  `  M
) c ) ) ) )
54simp1bi 1076 1  |-  ( M  e. oMnd  ->  M  e.  Mnd )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1990   A.wral 2912   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   lecple 15948  Tosetctos 17033   Mndcmnd 17294  oMndcomnd 29697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-omnd 29699
This theorem is referenced by:  omndadd2d  29708  omndadd2rd  29709  omndmul2  29712  omndmul3  29713  omndmul  29714  ogrpinv0le  29716  archirng  29742  gsumle  29779
  Copyright terms: Public domain W3C validator