HomeHome Metamath Proof Explorer
Theorem List (p. 299 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 29801-29900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremorngogrp 29801 An ordered ring is an ordered group. (Contributed by Thierry Arnoux, 23-Mar-2018.)
 |-  ( R  e. oRing  ->  R  e. oGrp )
 
Theoremisofld 29802 An ordered field is a field with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.)
 |-  ( F  e. oField  <->  ( F  e. Field  /\  F  e. oRing ) )
 
Theoremorngmul 29803 In an ordered ring, the ordering is compatible with the ring multiplication operation. (Contributed by Thierry Arnoux, 20-Jan-2018.)
 |-  B  =  ( Base `  R )   &    |-  .<_  =  ( le `  R )   &    |- 
 .0.  =  ( 0g `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. oRing  /\  ( X  e.  B  /\  .0.  .<_  X ) 
 /\  ( Y  e.  B  /\  .0.  .<_  Y ) )  ->  .0.  .<_  ( X 
 .x.  Y ) )
 
Theoremorngsqr 29804 In an ordered ring, all squares are positive. (Contributed by Thierry Arnoux, 20-Jan-2018.)
 |-  B  =  ( Base `  R )   &    |-  .<_  =  ( le `  R )   &    |- 
 .0.  =  ( 0g `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. oRing  /\  X  e.  B )  ->  .0.  .<_  ( X 
 .x.  X ) )
 
Theoremornglmulle 29805 In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   &    |-  ( ph  ->  R  e. oRing )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   &    |-  .<_  =  ( le `  R )   &    |-  ( ph  ->  X 
 .<_  Y )   &    |-  ( ph  ->  .0. 
 .<_  Z )   =>    |-  ( ph  ->  ( Z  .x.  X )  .<_  ( Z  .x.  Y )
 )
 
Theoremorngrmulle 29806 In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   &    |-  ( ph  ->  R  e. oRing )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   &    |-  .<_  =  ( le `  R )   &    |-  ( ph  ->  X 
 .<_  Y )   &    |-  ( ph  ->  .0. 
 .<_  Z )   =>    |-  ( ph  ->  ( X  .x.  Z )  .<_  ( Y  .x.  Z )
 )
 
Theoremornglmullt 29807 In an ordered ring, multiplication with a positive does not change strict comparison. (Contributed by Thierry Arnoux, 9-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   &    |-  ( ph  ->  R  e. oRing )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   &    |-  .<  =  ( lt `  R )   &    |-  ( ph  ->  R  e.  DivRing )   &    |-  ( ph  ->  X  .<  Y )   &    |-  ( ph  ->  .0. 
 .<  Z )   =>    |-  ( ph  ->  ( Z  .x.  X )  .<  ( Z  .x.  Y )
 )
 
Theoremorngrmullt 29808 In an ordered ring, multiplication with a positive does not change strict comparison. (Contributed by Thierry Arnoux, 9-Apr-2018.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   &    |-  ( ph  ->  R  e. oRing )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   &    |-  .<  =  ( lt `  R )   &    |-  ( ph  ->  R  e.  DivRing )   &    |-  ( ph  ->  X  .<  Y )   &    |-  ( ph  ->  .0. 
 .<  Z )   =>    |-  ( ph  ->  ( X  .x.  Z )  .<  ( Y  .x.  Z )
 )
 
Theoremorngmullt 29809 In an ordered ring, the strict ordering is compatible with the ring multiplication operation. (Contributed by Thierry Arnoux, 9-Sep-2018.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .0.  =  ( 0g `  R )   &    |-  .<  =  ( lt `  R )   &    |-  ( ph  ->  R  e. oRing )   &    |-  ( ph  ->  R  e.  DivRing )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  .0.  .<  X )   &    |-  ( ph  ->  .0.  .<  Y )   =>    |-  ( ph  ->  .0.  .<  ( X 
 .x.  Y ) )
 
Theoremofldfld 29810 An ordered field is a field. (Contributed by Thierry Arnoux, 20-Jan-2018.)
 |-  ( F  e. oField  ->  F  e. Field )
 
Theoremofldtos 29811 An ordered field is a totally ordered set. (Contributed by Thierry Arnoux, 20-Jan-2018.)
 |-  ( F  e. oField  ->  F  e. Toset )
 
Theoremorng0le1 29812 In an ordered ring, the ring unit is positive. (Contributed by Thierry Arnoux, 21-Jan-2018.)
 |-  .0.  =  ( 0g `  F )   &    |- 
 .1.  =  ( 1r `  F )   &    |-  .<_  =  ( le `  F )   =>    |-  ( F  e. oRing  ->  .0. 
 .<_  .1.  )
 
Theoremofldlt1 29813 In an ordered field, the ring unit is strictly positive. (Contributed by Thierry Arnoux, 21-Jan-2018.)
 |-  .0.  =  ( 0g `  F )   &    |- 
 .1.  =  ( 1r `  F )   &    |-  .<  =  ( lt `  F )   =>    |-  ( F  e. oField  ->  .0.  .<  .1.  )
 
Theoremofldchr 29814 The characteristic of an ordered field is zero. (Contributed by Thierry Arnoux, 21-Jan-2018.) (Proof shortened by AV, 6-Oct-2020.)
 |-  ( F  e. oField  ->  (chr `  F )  =  0
 )
 
Theoremsuborng 29815 Every subring of an ordered ring is also an ordered ring. (Contributed by Thierry Arnoux, 21-Jan-2018.)
 |-  (
 ( R  e. oRing  /\  ( Rs  A )  e.  Ring )  ->  ( Rs  A )  e. oRing )
 
Theoremsubofld 29816 Every subfield of an ordered field is also an ordered field. (Contributed by Thierry Arnoux, 21-Jan-2018.)
 |-  (
 ( F  e. oField  /\  ( Fs  A )  e. Field )  ->  ( Fs  A )  e. oField )
 
Theoremisarchiofld 29817* Axiom of Archimedes : a characterization of the Archimedean property for ordered fields. (Contributed by Thierry Arnoux, 9-Apr-2018.)
 |-  B  =  ( Base `  W )   &    |-  H  =  ( ZRHom `  W )   &    |- 
 .<  =  ( lt `  W )   =>    |-  ( W  e. oField  ->  ( W  e. Archi  <->  A. x  e.  B  E. n  e.  NN  x  .<  ( H `  n ) ) )
 
20.3.9.9  Ring homomorphisms - misc additions
 
Theoremrhmdvdsr 29818 A ring homomorphism preserves the divisibility relation. (Contributed by Thierry Arnoux, 22-Oct-2017.)
 |-  X  =  ( Base `  R )   &    |-  .||  =  (
 ||r `  R )   &    |-  ./  =  ( ||r `  S )   =>    |-  ( ( ( F  e.  ( R RingHom  S ) 
 /\  A  e.  X  /\  B  e.  X ) 
 /\  A  .||  B ) 
 ->  ( F `  A )  ./  ( F `  B ) )
 
Theoremrhmopp 29819 A ring homomorphism is also a ring homomorphism for the opposite rings. (Contributed by Thierry Arnoux, 27-Oct-2017.)
 |-  ( F  e.  ( R RingHom  S )  ->  F  e.  ( (oppr `  R ) RingHom  (oppr `  S ) ) )
 
Theoremelrhmunit 29820 Ring homomorphisms preserve unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.)
 |-  (
 ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
 )  ->  ( F `  A )  e.  (Unit `  S ) )
 
Theoremrhmdvd 29821 A ring homomorphism preserves ratios. (Contributed by Thierry Arnoux, 22-Oct-2017.)
 |-  U  =  (Unit `  S )   &    |-  X  =  ( Base `  R )   &    |-  ./  =  (/r `  S )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( F  e.  ( R RingHom  S ) 
 /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) 
 /\  ( ( F `
  B )  e.  U  /\  ( F `
  C )  e.  U ) )  ->  ( ( F `  A )  ./  ( F `
  B ) )  =  ( ( F `
  ( A  .x.  C ) )  ./  ( F `  ( B  .x.  C ) ) ) )
 
Theoremrhmunitinv 29822 Ring homomorphisms preserve the inverse of unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.)
 |-  (
 ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
 )  ->  ( F `  ( ( invr `  R ) `  A ) )  =  ( ( invr `  S ) `  ( F `  A ) ) )
 
Theoremkerunit 29823 If a unit element lies in the kernel of a ring homomorphism, then  0  = 
1, i.e. the target ring is the zero ring. (Contributed by Thierry Arnoux, 24-Oct-2017.)
 |-  U  =  (Unit `  R )   &    |-  .0.  =  ( 0g `  S )   &    |- 
 .1.  =  ( 1r `  S )   =>    |-  ( ( F  e.  ( R RingHom  S )  /\  ( U  i^i  ( `' F " {  .0.  } ) )  =/=  (/) )  ->  .1.  =  .0.  )
 
20.3.9.10  Scalar restriction operation
 
Syntaxcresv 29824 Extend class notation with the scalar restriction operation.
 classv
 
Definitiondf-resv 29825* Define an operator to restrict the scalar field component of an extended structure. (Contributed by Thierry Arnoux, 5-Sep-2018.)
 |-v  =  ( w  e.  _V ,  x  e.  _V  |->  if ( ( Base `  (Scalar `  w )
 )  C_  x ,  w ,  ( w sSet  <.
 (Scalar `  ndx ) ,  ( (Scalar `  w )s  x ) >. ) ) )
 
Theoremreldmresv 29826 The scalar restriction is a proper operator, so it can be used with ovprc1 6684. (Contributed by Thierry Arnoux, 6-Sep-2018.)
 |-  Rel  domv
 
Theoremresvval 29827 Value of structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.)
 |-  R  =  ( Wv  A )   &    |-  F  =  (Scalar `  W )   &    |-  B  =  (
 Base `  F )   =>    |-  ( ( W  e.  X  /\  A  e.  Y )  ->  R  =  if ( B  C_  A ,  W ,  ( W sSet  <. (Scalar `  ndx ) ,  ( Fs  A ) >. ) ) )
 
Theoremresvid2 29828 General behavior of trivial restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.)
 |-  R  =  ( Wv  A )   &    |-  F  =  (Scalar `  W )   &    |-  B  =  (
 Base `  F )   =>    |-  ( ( B 
 C_  A  /\  W  e.  X  /\  A  e.  Y )  ->  R  =  W )
 
Theoremresvval2 29829 Value of nontrivial structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.)
 |-  R  =  ( Wv  A )   &    |-  F  =  (Scalar `  W )   &    |-  B  =  (
 Base `  F )   =>    |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y )  ->  R  =  ( W sSet  <. (Scalar `  ndx ) ,  ( Fs  A ) >. ) )
 
Theoremresvsca 29830 Base set of a structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.)
 |-  R  =  ( Wv  A )   &    |-  F  =  (Scalar `  W )   &    |-  B  =  (
 Base `  F )   =>    |-  ( A  e.  V  ->  ( Fs  A )  =  (Scalar `  R ) )
 
Theoremresvlem 29831 Other elements of a structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.)
 |-  R  =  ( Wv  A )   &    |-  C  =  ( E `  W )   &    |-  E  = Slot  N   &    |-  N  e.  NN   &    |-  N  =/=  5   =>    |-  ( A  e.  V  ->  C  =  ( E `
  R ) )
 
Theoremresvbas 29832  Base is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.)
 |-  H  =  ( Gv  A )   &    |-  B  =  (
 Base `  G )   =>    |-  ( A  e.  V  ->  B  =  (
 Base `  H ) )
 
Theoremresvplusg 29833  +g is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.)
 |-  H  =  ( Gv  A )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( A  e.  V  ->  .+  =  ( +g  `  H ) )
 
Theoremresvvsca 29834  .s is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.)
 |-  H  =  ( Gv  A )   &    |-  .x.  =  ( .s `  G )   =>    |-  ( A  e.  V  ->  .x.  =  ( .s `  H ) )
 
Theoremresvmulr 29835  .s is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.)
 |-  H  =  ( Gv  A )   &    |-  .x.  =  ( .r `  G )   =>    |-  ( A  e.  V  ->  .x.  =  ( .r `  H ) )
 
Theoremresv0g 29836  0g is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.)
 |-  H  =  ( Gv  A )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( A  e.  V  ->  .0.  =  ( 0g
 `  H ) )
 
Theoremresv1r 29837  1r is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.)
 |-  H  =  ( Gv  A )   &    |-  .1.  =  ( 1r `  G )   =>    |-  ( A  e.  V  ->  .1.  =  ( 1r
 `  H ) )
 
Theoremresvcmn 29838 Scalar restriction preserves commutative monoids. (Contributed by Thierry Arnoux, 6-Sep-2018.)
 |-  H  =  ( Gv  A )   =>    |-  ( A  e.  V  ->  ( G  e. CMnd  <->  H  e. CMnd ) )
 
20.3.9.11  The commutative ring of gaussian integers
 
Theoremgzcrng 29839 The gaussian integers form a commutative ring. (Contributed by Thierry Arnoux, 18-Mar-2018.)
 |-  (flds  ZZ[_i] )  e.  CRing
 
20.3.9.12  The archimedean ordered field of real numbers
 
Theoremreofld 29840 The real numbers form an ordered field. (Contributed by Thierry Arnoux, 21-Jan-2018.)
 |- RRfld  e. oField
 
Theoremnn0omnd 29841 The nonnegative integers form an ordered monoid. (Contributed by Thierry Arnoux, 23-Mar-2018.)
 |-  (flds  NN0 )  e. oMnd
 
Theoremrearchi 29842 The field of the real numbers is Archimedean. See also arch 11289. (Contributed by Thierry Arnoux, 9-Apr-2018.)
 |- RRfld  e. Archi
 
Theoremnn0archi 29843 The monoid of the nonnegative integers is Archimedean. (Contributed by Thierry Arnoux, 16-Sep-2018.)
 |-  (flds  NN0 )  e. Archi
 
Theoremxrge0slmod 29844 The extended nonnegative real numbers form a semiring left module. One could also have used subringAlg to get the same structure. (Contributed by Thierry Arnoux, 6-Sep-2018.)
 |-  G  =  ( RR*ss  ( 0 [,] +oo ) )   &    |-  W  =  ( Gv  ( 0 [,) +oo ) )   =>    |-  W  e. SLMod
 
20.3.10  Matrices
 
20.3.10.1  The symmetric group
 
Theoremsymgfcoeu 29845* Uniqueness property of permutations. (Contributed by Thierry Arnoux, 22-Aug-2020.)
 |-  G  =  ( Base `  ( SymGrp `  D ) )   =>    |-  ( ( D  e.  V  /\  P  e.  G  /\  Q  e.  G ) 
 ->  E! p  e.  G  Q  =  ( P  o.  p ) )
 
20.3.10.2  Permutation Signs
 
Theorempsgndmfi 29846 For a finite base set, the permutation sign is defined for all permutations. (Contributed by Thierry Arnoux, 22-Aug-2020.)
 |-  S  =  (pmSgn `  D )   &    |-  G  =  ( Base `  ( SymGrp `  D ) )   =>    |-  ( D  e.  Fin  ->  S  Fn  G )
 
Theorempsgnid 29847 Permutation sign of the identity. (Contributed by Thierry Arnoux, 21-Aug-2020.)
 |-  S  =  (pmSgn `  D )   =>    |-  ( D  e.  Fin  ->  ( S `  (  _I  |`  D ) )  =  1 )
 
Theorempmtrprfv2 29848 In a transposition of two given points, each maps to the other. (Contributed by Thierry Arnoux, 22-Aug-2020.)
 |-  T  =  (pmTrsp `  D )   =>    |-  (
 ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  X  =/=  Y ) ) 
 ->  ( ( T `  { X ,  Y }
 ) `  Y )  =  X )
 
Theorempmtrto1cl 29849 Useful lemma for the following theorems. (Contributed by Thierry Arnoux, 21-Aug-2020.)
 |-  D  =  ( 1 ... N )   &    |-  T  =  (pmTrsp `  D )   =>    |-  ( ( K  e.  NN  /\  ( K  +  1 )  e.  D )  ->  ( T `  { K ,  ( K  +  1 ) }
 )  e.  ran  T )
 
Theorempsgnfzto1stlem 29850* Lemma for psgnfzto1st 29855. Our permutation of rank  (
n  +  1 ) can be written as a permutation of rank  n composed with a transposition. (Contributed by Thierry Arnoux, 21-Aug-2020.)
 |-  D  =  ( 1 ... N )   =>    |-  ( ( K  e.  NN  /\  ( K  +  1 )  e.  D )  ->  ( i  e.  D  |->  if ( i  =  1 ,  ( K  +  1 ) ,  if ( i  <_  ( K  +  1
 ) ,  ( i  -  1 ) ,  i ) ) )  =  ( ( (pmTrsp `  D ) `  { K ,  ( K  +  1 ) } )  o.  ( i  e.  D  |->  if ( i  =  1 ,  K ,  if ( i  <_  K ,  ( i  -  1
 ) ,  i ) ) ) ) )
 
Theoremfzto1stfv1 29851* Value of our permutation  P at 1. (Contributed by Thierry Arnoux, 23-Aug-2020.)
 |-  D  =  ( 1 ... N )   &    |-  P  =  ( i  e.  D  |->  if (
 i  =  1 ,  I ,  if (
 i  <_  I ,  ( i  -  1
 ) ,  i ) ) )   =>    |-  ( I  e.  D  ->  ( P `  1
 )  =  I )
 
Theoremfzto1st1 29852* Special case where the permutation defined in psgnfzto1st 29855 is the identity. (Contributed by Thierry Arnoux, 21-Aug-2020.)
 |-  D  =  ( 1 ... N )   &    |-  P  =  ( i  e.  D  |->  if (
 i  =  1 ,  I ,  if (
 i  <_  I ,  ( i  -  1
 ) ,  i ) ) )   =>    |-  ( I  =  1 
 ->  P  =  (  _I  |`  D ) )
 
Theoremfzto1st 29853* The function moving one element to the first position (and shifting all elements before it) is a permutation. (Contributed by Thierry Arnoux, 21-Aug-2020.)
 |-  D  =  ( 1 ... N )   &    |-  P  =  ( i  e.  D  |->  if (
 i  =  1 ,  I ,  if (
 i  <_  I ,  ( i  -  1
 ) ,  i ) ) )   &    |-  G  =  (
 SymGrp `  D )   &    |-  B  =  ( Base `  G )   =>    |-  ( I  e.  D  ->  P  e.  B )
 
Theoremfzto1stinvn 29854* Value of the inverse of our permutation  P at  I (Contributed by Thierry Arnoux, 23-Aug-2020.)
 |-  D  =  ( 1 ... N )   &    |-  P  =  ( i  e.  D  |->  if (
 i  =  1 ,  I ,  if (
 i  <_  I ,  ( i  -  1
 ) ,  i ) ) )   &    |-  G  =  (
 SymGrp `  D )   &    |-  B  =  ( Base `  G )   =>    |-  ( I  e.  D  ->  ( `' P `  I )  =  1 )
 
Theorempsgnfzto1st 29855* The permutation sign for moving one element to the first position. (Contributed by Thierry Arnoux, 21-Aug-2020.)
 |-  D  =  ( 1 ... N )   &    |-  P  =  ( i  e.  D  |->  if (
 i  =  1 ,  I ,  if (
 i  <_  I ,  ( i  -  1
 ) ,  i ) ) )   &    |-  G  =  (
 SymGrp `  D )   &    |-  B  =  ( Base `  G )   &    |-  S  =  (pmSgn `  D )   =>    |-  ( I  e.  D  ->  ( S `  P )  =  ( -u 1 ^ ( I  +  1 ) ) )
 
20.3.10.3  Transpositions
 
Theorempmtridf1o 29856 Transpositions of  X and  Y (understood to be the identity when  X  =  Y), are bijections. (Contributed by Thierry Arnoux, 1-Jan-2022.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  X  e.  A )   &    |-  ( ph  ->  Y  e.  A )   &    |-  T  =  if ( X  =  Y ,  (  _I  |`  A ) ,  (
 (pmTrsp `  A ) `  { X ,  Y }
 ) )   =>    |-  ( ph  ->  T : A -1-1-onto-> A )
 
Theorempmtridfv1 29857 Value at X of the transposition of 
X and  Y (understood to be the identity when X = Y ). (Contributed by Thierry Arnoux, 3-Jan-2022.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  X  e.  A )   &    |-  ( ph  ->  Y  e.  A )   &    |-  T  =  if ( X  =  Y ,  (  _I  |`  A ) ,  (
 (pmTrsp `  A ) `  { X ,  Y }
 ) )   =>    |-  ( ph  ->  ( T `  X )  =  Y )
 
Theorempmtridfv2 29858 Value at Y of the transposition of 
X and  Y (understood to be the identity when X = Y ). (Contributed by Thierry Arnoux, 3-Jan-2022.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  X  e.  A )   &    |-  ( ph  ->  Y  e.  A )   &    |-  T  =  if ( X  =  Y ,  (  _I  |`  A ) ,  (
 (pmTrsp `  A ) `  { X ,  Y }
 ) )   =>    |-  ( ph  ->  ( T `  Y )  =  X )
 
20.3.10.4  Submatrices
 
Syntaxcsmat 29859 Syntax for a function generating submatrixes.
 class subMat1
 
Definitiondf-smat 29860* Define a function generating submatrices of an integer-indexed matrix. The function maps an index in 
( ( 1 ... M )  X.  (
1 ... N ) ) into a new index in  ( ( 1 ... ( M  - 
1 ) )  X.  ( 1 ... ( N  -  1 ) ) ). A submatrix is obtained by deleting a row and a column of the original matrix. Because this function re-indexes the matrix, the resulting submatrix still has the same index set for rows and columns, and its determinent is defined, unlike the current df-subma 20383. (Contributed by Thierry Arnoux, 18-Aug-2020.)
 |- subMat1  =  ( m  e.  _V  |->  ( k  e.  NN ,  l  e.  NN  |->  ( m  o.  ( i  e. 
 NN ,  j  e. 
 NN  |->  <. if ( i  <  k ,  i ,  ( i  +  1 ) ) ,  if ( j  <  l ,  j ,  ( j  +  1 ) )
 >. ) ) ) )
 
Theoremsmatfval 29861* Value of the submatrix. (Contributed by Thierry Arnoux, 19-Aug-2020.)
 |-  (
 ( K  e.  NN  /\  L  e.  NN  /\  M  e.  V )  ->  ( K (subMat1 `  M ) L )  =  ( M  o.  ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  <  K ,  i ,  ( i  +  1 ) ) ,  if ( j  <  L ,  j ,  ( j  +  1 ) )
 >. ) ) )
 
Theoremsmatrcl 29862 Closure of the rectangular submatrix. (Contributed by Thierry Arnoux, 19-Aug-2020.)
 |-  S  =  ( K (subMat1 `  A ) L )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  K  e.  ( 1 ... M ) )   &    |-  ( ph  ->  L  e.  ( 1 ...
 N ) )   &    |-  ( ph  ->  A  e.  ( B  ^m  ( ( 1
 ... M )  X.  ( 1 ... N ) ) ) )   =>    |-  ( ph  ->  S  e.  ( B  ^m  ( ( 1 ... ( M  -  1 ) )  X.  ( 1 ... ( N  -  1
 ) ) ) ) )
 
Theoremsmatlem 29863 Lemma for the next theorems. (Contributed by Thierry Arnoux, 19-Aug-2020.)
 |-  S  =  ( K (subMat1 `  A ) L )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  K  e.  ( 1 ... M ) )   &    |-  ( ph  ->  L  e.  ( 1 ...
 N ) )   &    |-  ( ph  ->  A  e.  ( B  ^m  ( ( 1
 ... M )  X.  ( 1 ... N ) ) ) )   &    |-  ( ph  ->  I  e.  NN )   &    |-  ( ph  ->  J  e.  NN )   &    |-  ( ph  ->  if ( I  <  K ,  I ,  ( I  +  1 ) )  =  X )   &    |-  ( ph  ->  if ( J  <  L ,  J ,  ( J  +  1 ) )  =  Y )   =>    |-  ( ph  ->  ( I S J )  =  ( X A Y ) )
 
Theoremsmattl 29864 Entries of a submatrix, top left. (Contributed by Thierry Arnoux, 19-Aug-2020.)
 |-  S  =  ( K (subMat1 `  A ) L )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  K  e.  ( 1 ... M ) )   &    |-  ( ph  ->  L  e.  ( 1 ...
 N ) )   &    |-  ( ph  ->  A  e.  ( B  ^m  ( ( 1
 ... M )  X.  ( 1 ... N ) ) ) )   &    |-  ( ph  ->  I  e.  ( 1..^ K ) )   &    |-  ( ph  ->  J  e.  ( 1..^ L ) )   =>    |-  ( ph  ->  ( I S J )  =  ( I A J ) )
 
Theoremsmattr 29865 Entries of a submatrix, top right. (Contributed by Thierry Arnoux, 19-Aug-2020.)
 |-  S  =  ( K (subMat1 `  A ) L )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  K  e.  ( 1 ... M ) )   &    |-  ( ph  ->  L  e.  ( 1 ...
 N ) )   &    |-  ( ph  ->  A  e.  ( B  ^m  ( ( 1
 ... M )  X.  ( 1 ... N ) ) ) )   &    |-  ( ph  ->  I  e.  ( K ... M ) )   &    |-  ( ph  ->  J  e.  ( 1..^ L ) )   =>    |-  ( ph  ->  ( I S J )  =  ( ( I  +  1 ) A J ) )
 
Theoremsmatbl 29866 Entries of a submatrix, bottom left. (Contributed by Thierry Arnoux, 19-Aug-2020.)
 |-  S  =  ( K (subMat1 `  A ) L )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  K  e.  ( 1 ... M ) )   &    |-  ( ph  ->  L  e.  ( 1 ...
 N ) )   &    |-  ( ph  ->  A  e.  ( B  ^m  ( ( 1
 ... M )  X.  ( 1 ... N ) ) ) )   &    |-  ( ph  ->  I  e.  ( 1..^ K ) )   &    |-  ( ph  ->  J  e.  ( L ... N ) )   =>    |-  ( ph  ->  ( I S J )  =  ( I A ( J  +  1 ) ) )
 
Theoremsmatbr 29867 Entries of a submatrix, bottom right. (Contributed by Thierry Arnoux, 19-Aug-2020.)
 |-  S  =  ( K (subMat1 `  A ) L )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  K  e.  ( 1 ... M ) )   &    |-  ( ph  ->  L  e.  ( 1 ...
 N ) )   &    |-  ( ph  ->  A  e.  ( B  ^m  ( ( 1
 ... M )  X.  ( 1 ... N ) ) ) )   &    |-  ( ph  ->  I  e.  ( K ... M ) )   &    |-  ( ph  ->  J  e.  ( L ... N ) )   =>    |-  ( ph  ->  ( I S J )  =  ( ( I  +  1 ) A ( J  +  1 ) ) )
 
Theoremsmatcl 29868 Closure of the square submatrix: if 
M is a square matrix of dimension  N with indexes in  ( 1 ... N ), then a submatrix of  M is of dimension  ( N  - 
1 ). (Contributed by Thierry Arnoux, 19-Aug-2020.)
 |-  A  =  ( ( 1 ...
 N ) Mat  R )   &    |-  B  =  ( Base `  A )   &    |-  C  =  (
 Base `  ( ( 1
 ... ( N  -  1 ) ) Mat  R ) )   &    |-  S  =  ( K (subMat1 `  M ) L )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  K  e.  (
 1 ... N ) )   &    |-  ( ph  ->  L  e.  ( 1 ... N ) )   &    |-  ( ph  ->  M  e.  B )   =>    |-  ( ph  ->  S  e.  C )
 
Theoremmatmpt2 29869* Write a square matrix as a mapping operation. (Contributed by Thierry Arnoux, 16-Aug-2020.)
 |-  A  =  ( N Mat  R )   &    |-  B  =  ( Base `  A )   =>    |-  ( M  e.  B  ->  M  =  ( i  e.  N ,  j  e.  N  |->  ( i M j ) ) )
 
Theorem1smat1 29870 The submatrix of the identity matrix obtained by removing the ith row and the ith column is an identity matrix. Cf. 1marepvsma1 20389. (Contributed by Thierry Arnoux, 19-Aug-2020.)
 |-  .1.  =  ( 1r `  (
 ( 1 ... N ) Mat  R ) )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  I  e.  ( 1 ...
 N ) )   =>    |-  ( ph  ->  ( I (subMat1 `  .1.  ) I )  =  ( 1r `  ( ( 1 ... ( N  -  1 ) ) Mat 
 R ) ) )
 
Theoremsubmat1n 29871 One case where the submatrix with integer indices, subMat1, and the general submatrix subMat, agree. (Contributed by Thierry Arnoux, 22-Aug-2020.)
 |-  A  =  ( ( 1 ...
 N ) Mat  R )   &    |-  B  =  ( Base `  A )   =>    |-  ( ( N  e.  NN  /\  M  e.  B )  ->  ( N (subMat1 `  M ) N )  =  ( N ( ( ( 1 ...
 N ) subMat  R ) `  M ) N ) )
 
Theoremsubmatres 29872 Special case where the submatrix is a restriction of the initial matrix, and no renumbering occurs. (Contributed by Thierry Arnoux, 26-Aug-2020.)
 |-  A  =  ( ( 1 ...
 N ) Mat  R )   &    |-  B  =  ( Base `  A )   =>    |-  ( ( N  e.  NN  /\  M  e.  B )  ->  ( N (subMat1 `  M ) N )  =  ( M  |`  ( ( 1 ... ( N  -  1 ) )  X.  ( 1 ... ( N  -  1
 ) ) ) ) )
 
Theoremsubmateqlem1 29873 Lemma for submateq 29875. (Contributed by Thierry Arnoux, 25-Aug-2020.)
 |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  K  e.  ( 1 ... N ) )   &    |-  ( ph  ->  M  e.  ( 1 ... ( N  -  1
 ) ) )   &    |-  ( ph  ->  K  <_  M )   =>    |-  ( ph  ->  ( M  e.  ( K ... N )  /\  ( M  +  1 )  e.  ( ( 1 ...
 N )  \  { K } ) ) )
 
Theoremsubmateqlem2 29874 Lemma for submateq 29875. (Contributed by Thierry Arnoux, 26-Aug-2020.)
 |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  K  e.  ( 1 ... N ) )   &    |-  ( ph  ->  M  e.  ( 1 ... ( N  -  1
 ) ) )   &    |-  ( ph  ->  M  <  K )   =>    |-  ( ph  ->  ( M  e.  ( 1..^ K )  /\  M  e.  ( ( 1 ...
 N )  \  { K } ) ) )
 
Theoremsubmateq 29875* Sufficient condition for two submatrices to be equal. (Contributed by Thierry Arnoux, 25-Aug-2020.)
 |-  A  =  ( ( 1 ...
 N ) Mat  R )   &    |-  B  =  ( Base `  A )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  I  e.  (
 1 ... N ) )   &    |-  ( ph  ->  J  e.  ( 1 ... N ) )   &    |-  ( ph  ->  E  e.  B )   &    |-  ( ph  ->  F  e.  B )   &    |-  ( ( ph  /\  i  e.  ( ( 1 ...
 N )  \  { I } )  /\  j  e.  ( ( 1 ...
 N )  \  { J } ) )  ->  ( i E j )  =  ( i F j ) )   =>    |-  ( ph  ->  ( I
 (subMat1 `  E ) J )  =  ( I (subMat1 `  F ) J ) )
 
Theoremsubmatminr1 29876 If we take a submatrix by removing the row  I and column  J, then the result is the same on the matrix with row  I and column  J modified by the minMatR1 operator. (Contributed by Thierry Arnoux, 25-Aug-2020.)
 |-  A  =  ( ( 1 ...
 N ) Mat  R )   &    |-  B  =  ( Base `  A )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  I  e.  (
 1 ... N ) )   &    |-  ( ph  ->  J  e.  ( 1 ... N ) )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  M  e.  B )   &    |-  E  =  ( I ( ( ( 1 ... N ) minMatR1  R ) `  M ) J )   =>    |-  ( ph  ->  ( I (subMat1 `  M ) J )  =  ( I (subMat1 `  E ) J ) )
 
20.3.10.5  Matrix literals
 
Syntaxclmat 29877 Extend class notation with the literal matrix conversion function.
 class litMat
 
Definitiondf-lmat 29878* Define a function converting words of words into matrices. (Contributed by Thierry Arnoux, 28-Aug-2020.)
 |- litMat  =  ( m  e.  _V  |->  ( i  e.  ( 1
 ... ( # `  m ) ) ,  j  e.  ( 1 ... ( # `
  ( m `  0 ) ) ) 
 |->  ( ( m `  ( i  -  1
 ) ) `  (
 j  -  1 ) ) ) )
 
Theoremlmatval 29879* Value of the literal matrix conversion function. (Contributed by Thierry Arnoux, 28-Aug-2020.)
 |-  ( M  e.  V  ->  (litMat `  M )  =  ( i  e.  ( 1
 ... ( # `  M ) ) ,  j  e.  ( 1 ... ( # `
  ( M `  0 ) ) ) 
 |->  ( ( M `  ( i  -  1
 ) ) `  (
 j  -  1 ) ) ) )
 
Theoremlmatfval 29880* Entries of a literal matrix. (Contributed by Thierry Arnoux, 28-Aug-2020.)
 |-  M  =  (litMat `  W )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  W  e. Word Word  V )   &    |-  ( ph  ->  ( # `  W )  =  N )   &    |-  ( ( ph  /\  i  e.  ( 0..^ N ) )  ->  ( # `  ( W `
  i ) )  =  N )   &    |-  ( ph  ->  I  e.  (
 1 ... N ) )   &    |-  ( ph  ->  J  e.  ( 1 ... N ) )   =>    |-  ( ph  ->  ( I M J )  =  ( ( W `  ( I  -  1
 ) ) `  ( J  -  1 ) ) )
 
Theoremlmatfvlem 29881* Useful lemma to extract literal matrix entries. Suggested by Mario Carneiro. (Contributed by Thierry Arnoux, 3-Sep-2020.)
 |-  M  =  (litMat `  W )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  W  e. Word Word  V )   &    |-  ( ph  ->  ( # `  W )  =  N )   &    |-  ( ( ph  /\  i  e.  ( 0..^ N ) )  ->  ( # `  ( W `
  i ) )  =  N )   &    |-  K  e.  NN0   &    |-  L  e.  NN0   &    |-  I  <_  N   &    |-  J  <_  N   &    |-  ( K  +  1 )  =  I   &    |-  ( L  +  1 )  =  J   &    |-  ( W `  K )  =  X   &    |-  ( ph  ->  ( X `  L )  =  Y )   =>    |-  ( ph  ->  ( I M J )  =  Y )
 
Theoremlmatcl 29882* Closure of the literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.)
 |-  M  =  (litMat `  W )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  W  e. Word Word  V )   &    |-  ( ph  ->  ( # `  W )  =  N )   &    |-  ( ( ph  /\  i  e.  ( 0..^ N ) )  ->  ( # `  ( W `
  i ) )  =  N )   &    |-  V  =  ( Base `  R )   &    |-  O  =  ( ( 1 ...
 N ) Mat  R )   &    |-  P  =  ( Base `  O )   &    |-  ( ph  ->  R  e.  X )   =>    |-  ( ph  ->  M  e.  P )
 
Theoremlmat22lem 29883* Lemma for lmat22e11 29884 and co. (Contributed by Thierry Arnoux, 28-Aug-2020.)
 |-  M  =  (litMat `  <" <" A B "> <" C D "> "> )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  C  e.  V )   &    |-  ( ph  ->  D  e.  V )   =>    |-  ( ( ph  /\  i  e.  ( 0..^ 2 ) )  ->  ( # `  ( <"
 <" A B "> <" C D "> "> `  i
 ) )  =  2 )
 
Theoremlmat22e11 29884 Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 28-Aug-2020.)
 |-  M  =  (litMat `  <" <" A B "> <" C D "> "> )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  C  e.  V )   &    |-  ( ph  ->  D  e.  V )   =>    |-  ( ph  ->  ( 1 M 1 )  =  A )
 
Theoremlmat22e12 29885 Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.)
 |-  M  =  (litMat `  <" <" A B "> <" C D "> "> )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  C  e.  V )   &    |-  ( ph  ->  D  e.  V )   =>    |-  ( ph  ->  ( 1 M 2 )  =  B )
 
Theoremlmat22e21 29886 Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.)
 |-  M  =  (litMat `  <" <" A B "> <" C D "> "> )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  C  e.  V )   &    |-  ( ph  ->  D  e.  V )   =>    |-  ( ph  ->  ( 2 M 1 )  =  C )
 
Theoremlmat22e22 29887 Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.)
 |-  M  =  (litMat `  <" <" A B "> <" C D "> "> )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  C  e.  V )   &    |-  ( ph  ->  D  e.  V )   =>    |-  ( ph  ->  ( 2 M 2 )  =  D )
 
Theoremlmat22det 29888 The determinant of a literal 2x2 complex matrix. (Contributed by Thierry Arnoux, 1-Sep-2020.)
 |-  M  =  (litMat `  <" <" A B "> <" C D "> "> )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  C  e.  V )   &    |-  ( ph  ->  D  e.  V )   &    |-  .x.  =  ( .r `  R )   &    |-  .-  =  ( -g `  R )   &    |-  V  =  ( Base `  R )   &    |-  J  =  ( ( 1 ... 2
 ) maDet  R )   &    |-  ( ph  ->  R  e.  Ring )   =>    |-  ( ph  ->  ( J `  M )  =  ( ( A  .x.  D )  .-  ( C  .x.  B ) ) )
 
20.3.10.6  Laplace expansion of determinants
 
Theoremmdetpmtr1 29889* The determinant of a matrix with permuted rows is the determinant of the original matrix multiplied by the sign of the permutation. (Contributed by Thierry Arnoux, 22-Aug-2020.)
 |-  A  =  ( N Mat  R )   &    |-  B  =  ( Base `  A )   &    |-  D  =  ( N maDet  R )   &    |-  G  =  ( Base `  ( SymGrp `  N ) )   &    |-  S  =  (pmSgn `  N )   &    |-  Z  =  ( ZRHom `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  E  =  ( i  e.  N ,  j  e.  N  |->  ( ( P `
  i ) M j ) )   =>    |-  ( ( ( R  e.  CRing  /\  N  e.  Fin )  /\  ( M  e.  B  /\  P  e.  G )
 )  ->  ( D `  M )  =  ( ( ( Z  o.  S ) `  P )  .x.  ( D `  E ) ) )
 
Theoremmdetpmtr2 29890* The determinant of a matrix with permuted columns is the determinant of the original matrix multiplied by the sign of the permutation. (Contributed by Thierry Arnoux, 22-Aug-2020.)
 |-  A  =  ( N Mat  R )   &    |-  B  =  ( Base `  A )   &    |-  D  =  ( N maDet  R )   &    |-  G  =  ( Base `  ( SymGrp `  N ) )   &    |-  S  =  (pmSgn `  N )   &    |-  Z  =  ( ZRHom `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  E  =  ( i  e.  N ,  j  e.  N  |->  ( i M ( P `  j
 ) ) )   =>    |-  ( ( ( R  e.  CRing  /\  N  e.  Fin )  /\  ( M  e.  B  /\  P  e.  G )
 )  ->  ( D `  M )  =  ( ( ( Z  o.  S ) `  P )  .x.  ( D `  E ) ) )
 
Theoremmdetpmtr12 29891* The determinant of a matrix with permuted rows and columns is the determinant of the original matrix multiplied by the product of the signs of the permutations. (Contributed by Thierry Arnoux, 22-Aug-2020.)
 |-  A  =  ( N Mat  R )   &    |-  B  =  ( Base `  A )   &    |-  D  =  ( N maDet  R )   &    |-  G  =  ( Base `  ( SymGrp `  N ) )   &    |-  S  =  (pmSgn `  N )   &    |-  Z  =  ( ZRHom `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  E  =  ( i  e.  N ,  j  e.  N  |->  ( ( P `
  i ) M ( Q `  j
 ) ) )   &    |-  ( ph  ->  R  e.  CRing )   &    |-  ( ph  ->  N  e.  Fin )   &    |-  ( ph  ->  M  e.  B )   &    |-  ( ph  ->  P  e.  G )   &    |-  ( ph  ->  Q  e.  G )   =>    |-  ( ph  ->  ( D `  M )  =  ( ( Z `  ( ( S `  P )  x.  ( S `  Q ) ) )  .x.  ( D `  E ) ) )
 
Theoremmdetlap1 29892* A Laplace expansion of the determinant of a matrix, using the adjunct (cofactor) matrix. (Contributed by Thierry Arnoux, 16-Aug-2020.)
 |-  A  =  ( N Mat  R )   &    |-  B  =  ( Base `  A )   &    |-  D  =  ( N maDet  R )   &    |-  K  =  ( N maAdju  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e.  CRing  /\  M  e.  B  /\  I  e.  N )  ->  ( D `  M )  =  ( R  gsumg  (
 j  e.  N  |->  ( ( I M j )  .x.  ( j
 ( K `  M ) I ) ) ) ) )
 
Theoremmadjusmdetlem1 29893* Lemma for madjusmdet 29897. (Contributed by Thierry Arnoux, 22-Aug-2020.)
 |-  B  =  ( Base `  A )   &    |-  A  =  ( ( 1 ...
 N ) Mat  R )   &    |-  D  =  ( (
 1 ... N ) maDet  R )   &    |-  K  =  ( ( 1 ... N ) maAdju  R )   &    |-  .x.  =  ( .r `  R )   &    |-  Z  =  ( ZRHom `  R )   &    |-  E  =  ( ( 1 ... ( N  -  1 ) ) maDet  R )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  R  e.  CRing )   &    |-  ( ph  ->  I  e.  ( 1 ... N ) )   &    |-  ( ph  ->  J  e.  ( 1 ...
 N ) )   &    |-  ( ph  ->  M  e.  B )   &    |-  G  =  ( Base `  ( SymGrp `  ( 1 ... N ) ) )   &    |-  S  =  (pmSgn `  (
 1 ... N ) )   &    |-  U  =  ( I
 ( ( ( 1
 ... N ) minMatR1  R ) `  M ) J )   &    |-  W  =  ( i  e.  ( 1
 ... N ) ,  j  e.  ( 1
 ... N )  |->  ( ( P `  i
 ) U ( Q `
  j ) ) )   &    |-  ( ph  ->  P  e.  G )   &    |-  ( ph  ->  Q  e.  G )   &    |-  ( ph  ->  ( P `  N )  =  I )   &    |-  ( ph  ->  ( Q `  N )  =  J )   &    |-  ( ph  ->  ( I (subMat1 `  U ) J )  =  ( N (subMat1 `  W ) N ) )   =>    |-  ( ph  ->  ( J ( K `  M ) I )  =  ( ( Z `
  ( ( S `
  P )  x.  ( S `  Q ) ) )  .x.  ( E `  ( I (subMat1 `  M ) J ) ) ) )
 
Theoremmadjusmdetlem2 29894* Lemma for madjusmdet 29897. (Contributed by Thierry Arnoux, 26-Aug-2020.)
 |-  B  =  ( Base `  A )   &    |-  A  =  ( ( 1 ...
 N ) Mat  R )   &    |-  D  =  ( (
 1 ... N ) maDet  R )   &    |-  K  =  ( ( 1 ... N ) maAdju  R )   &    |-  .x.  =  ( .r `  R )   &    |-  Z  =  ( ZRHom `  R )   &    |-  E  =  ( ( 1 ... ( N  -  1 ) ) maDet  R )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  R  e.  CRing )   &    |-  ( ph  ->  I  e.  ( 1 ... N ) )   &    |-  ( ph  ->  J  e.  ( 1 ...
 N ) )   &    |-  ( ph  ->  M  e.  B )   &    |-  P  =  ( i  e.  ( 1 ...
 N )  |->  if (
 i  =  1 ,  I ,  if (
 i  <_  I ,  ( i  -  1
 ) ,  i ) ) )   &    |-  S  =  ( i  e.  ( 1
 ... N )  |->  if ( i  =  1 ,  N ,  if ( i  <_  N ,  ( i  -  1
 ) ,  i ) ) )   =>    |-  ( ( ph  /\  X  e.  ( 1 ... ( N  -  1 ) ) )  ->  if ( X  <  I ,  X ,  ( X  +  1 ) )  =  ( ( P  o.  `' S ) `  X ) )
 
Theoremmadjusmdetlem3 29895* Lemma for madjusmdet 29897. (Contributed by Thierry Arnoux, 27-Aug-2020.)
 |-  B  =  ( Base `  A )   &    |-  A  =  ( ( 1 ...
 N ) Mat  R )   &    |-  D  =  ( (
 1 ... N ) maDet  R )   &    |-  K  =  ( ( 1 ... N ) maAdju  R )   &    |-  .x.  =  ( .r `  R )   &    |-  Z  =  ( ZRHom `  R )   &    |-  E  =  ( ( 1 ... ( N  -  1 ) ) maDet  R )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  R  e.  CRing )   &    |-  ( ph  ->  I  e.  ( 1 ... N ) )   &    |-  ( ph  ->  J  e.  ( 1 ...
 N ) )   &    |-  ( ph  ->  M  e.  B )   &    |-  P  =  ( i  e.  ( 1 ...
 N )  |->  if (
 i  =  1 ,  I ,  if (
 i  <_  I ,  ( i  -  1
 ) ,  i ) ) )   &    |-  S  =  ( i  e.  ( 1
 ... N )  |->  if ( i  =  1 ,  N ,  if ( i  <_  N ,  ( i  -  1
 ) ,  i ) ) )   &    |-  Q  =  ( j  e.  ( 1
 ... N )  |->  if ( j  =  1 ,  J ,  if ( j  <_  J ,  ( j  -  1
 ) ,  j ) ) )   &    |-  T  =  ( j  e.  ( 1
 ... N )  |->  if ( j  =  1 ,  N ,  if ( j  <_  N ,  ( j  -  1
 ) ,  j ) ) )   &    |-  W  =  ( i  e.  ( 1
 ... N ) ,  j  e.  ( 1
 ... N )  |->  ( ( ( P  o.  `' S ) `  i
 ) U ( ( Q  o.  `' T ) `  j ) ) )   &    |-  ( ph  ->  U  e.  B )   =>    |-  ( ph  ->  ( I (subMat1 `  U ) J )  =  ( N (subMat1 `  W ) N ) )
 
Theoremmadjusmdetlem4 29896* Lemma for madjusmdet 29897. (Contributed by Thierry Arnoux, 22-Aug-2020.)
 |-  B  =  ( Base `  A )   &    |-  A  =  ( ( 1 ...
 N ) Mat  R )   &    |-  D  =  ( (
 1 ... N ) maDet  R )   &    |-  K  =  ( ( 1 ... N ) maAdju  R )   &    |-  .x.  =  ( .r `  R )   &    |-  Z  =  ( ZRHom `  R )   &    |-  E  =  ( ( 1 ... ( N  -  1 ) ) maDet  R )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  R  e.  CRing )   &    |-  ( ph  ->  I  e.  ( 1 ... N ) )   &    |-  ( ph  ->  J  e.  ( 1 ...
 N ) )   &    |-  ( ph  ->  M  e.  B )   &    |-  P  =  ( i  e.  ( 1 ...
 N )  |->  if (
 i  =  1 ,  I ,  if (
 i  <_  I ,  ( i  -  1
 ) ,  i ) ) )   &    |-  S  =  ( i  e.  ( 1
 ... N )  |->  if ( i  =  1 ,  N ,  if ( i  <_  N ,  ( i  -  1
 ) ,  i ) ) )   &    |-  Q  =  ( j  e.  ( 1
 ... N )  |->  if ( j  =  1 ,  J ,  if ( j  <_  J ,  ( j  -  1
 ) ,  j ) ) )   &    |-  T  =  ( j  e.  ( 1
 ... N )  |->  if ( j  =  1 ,  N ,  if ( j  <_  N ,  ( j  -  1
 ) ,  j ) ) )   =>    |-  ( ph  ->  ( J ( K `  M ) I )  =  ( ( Z `
  ( -u 1 ^ ( I  +  J ) ) ) 
 .x.  ( E `  ( I (subMat1 `  M ) J ) ) ) )
 
Theoremmadjusmdet 29897 Express the cofactor of the matrix, i.e. the entries of its adjunct matrix, using determinant of submatrixes. (Contributed by Thierry Arnoux, 23-Aug-2020.)
 |-  B  =  ( Base `  A )   &    |-  A  =  ( ( 1 ...
 N ) Mat  R )   &    |-  D  =  ( (
 1 ... N ) maDet  R )   &    |-  K  =  ( ( 1 ... N ) maAdju  R )   &    |-  .x.  =  ( .r `  R )   &    |-  Z  =  ( ZRHom `  R )   &    |-  E  =  ( ( 1 ... ( N  -  1 ) ) maDet  R )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  R  e.  CRing )   &    |-  ( ph  ->  I  e.  ( 1 ... N ) )   &    |-  ( ph  ->  J  e.  ( 1 ...
 N ) )   &    |-  ( ph  ->  M  e.  B )   =>    |-  ( ph  ->  ( J ( K `  M ) I )  =  ( ( Z `
  ( -u 1 ^ ( I  +  J ) ) ) 
 .x.  ( E `  ( I (subMat1 `  M ) J ) ) ) )
 
Theoremmdetlap 29898* Laplace expansion of the determinant of a square matrix. (Contributed by Thierry Arnoux, 19-Aug-2020.)
 |-  B  =  ( Base `  A )   &    |-  A  =  ( ( 1 ...
 N ) Mat  R )   &    |-  D  =  ( (
 1 ... N ) maDet  R )   &    |-  K  =  ( ( 1 ... N ) maAdju  R )   &    |-  .x.  =  ( .r `  R )   &    |-  Z  =  ( ZRHom `  R )   &    |-  E  =  ( ( 1 ... ( N  -  1 ) ) maDet  R )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  R  e.  CRing )   &    |-  ( ph  ->  I  e.  ( 1 ... N ) )   &    |-  ( ph  ->  J  e.  ( 1 ...
 N ) )   &    |-  ( ph  ->  M  e.  B )   =>    |-  ( ph  ->  ( D `  M )  =  ( R  gsumg  ( j  e.  (
 1 ... N )  |->  ( ( Z `  ( -u 1 ^ ( I  +  j ) ) )  .x.  ( ( I M j )  .x.  ( E `  ( I (subMat1 `  M )
 j ) ) ) ) ) ) )
 
20.3.11  Topology
 
20.3.11.1  Open maps
 
Theoremfvproj 29899* Value of a function on pairs, given two projections  F and 
G. (Contributed by Thierry Arnoux, 30-Dec-2019.)
 |-  H  =  ( x  e.  A ,  y  e.  B  |->  <.
 ( F `  x ) ,  ( G `  y ) >. )   &    |-  ( ph  ->  X  e.  A )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( H `  <. X ,  Y >. )  =  <. ( F `
  X ) ,  ( G `  Y ) >. )
 
Theoremfimaproj 29900* Image of a cartesian product for a function on pairs, given two projections  F and  G. (Contributed by Thierry Arnoux, 30-Dec-2019.)
 |-  H  =  ( x  e.  A ,  y  e.  B  |->  <.
 ( F `  x ) ,  ( G `  y ) >. )   &    |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  G  Fn  B )   &    |-  ( ph  ->  X 
 C_  A )   &    |-  ( ph  ->  Y  C_  B )   =>    |-  ( ph  ->  ( H " ( X  X.  Y ) )  =  ( ( F " X )  X.  ( G " Y ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >