Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orngmullt Structured version   Visualization version   Unicode version

Theorem orngmullt 29809
Description: In an ordered ring, the strict ordering is compatible with the ring multiplication operation. (Contributed by Thierry Arnoux, 9-Sep-2018.)
Hypotheses
Ref Expression
orngmullt.b  |-  B  =  ( Base `  R
)
orngmullt.t  |-  .x.  =  ( .r `  R )
orngmullt.0  |-  .0.  =  ( 0g `  R )
orngmullt.l  |-  .<  =  ( lt `  R )
orngmullt.1  |-  ( ph  ->  R  e. oRing )
orngmullt.4  |-  ( ph  ->  R  e.  DivRing )
orngmullt.2  |-  ( ph  ->  X  e.  B )
orngmullt.3  |-  ( ph  ->  Y  e.  B )
orngmullt.x  |-  ( ph  ->  .0.  .<  X )
orngmullt.y  |-  ( ph  ->  .0.  .<  Y )
Assertion
Ref Expression
orngmullt  |-  ( ph  ->  .0.  .<  ( X  .x.  Y ) )

Proof of Theorem orngmullt
StepHypRef Expression
1 orngmullt.1 . . 3  |-  ( ph  ->  R  e. oRing )
2 orngmullt.2 . . 3  |-  ( ph  ->  X  e.  B )
3 orngmullt.x . . . . 5  |-  ( ph  ->  .0.  .<  X )
4 orngring 29800 . . . . . . 7  |-  ( R  e. oRing  ->  R  e.  Ring )
5 ringgrp 18552 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
Grp )
6 orngmullt.b . . . . . . . 8  |-  B  =  ( Base `  R
)
7 orngmullt.0 . . . . . . . 8  |-  .0.  =  ( 0g `  R )
86, 7grpidcl 17450 . . . . . . 7  |-  ( R  e.  Grp  ->  .0.  e.  B )
91, 4, 5, 84syl 19 . . . . . 6  |-  ( ph  ->  .0.  e.  B )
10 eqid 2622 . . . . . . 7  |-  ( le
`  R )  =  ( le `  R
)
11 orngmullt.l . . . . . . 7  |-  .<  =  ( lt `  R )
1210, 11pltval 16960 . . . . . 6  |-  ( ( R  e. oRing  /\  .0.  e.  B  /\  X  e.  B
)  ->  (  .0.  .<  X 
<->  (  .0.  ( le
`  R ) X  /\  .0.  =/=  X
) ) )
131, 9, 2, 12syl3anc 1326 . . . . 5  |-  ( ph  ->  (  .0.  .<  X  <->  (  .0.  ( le `  R ) X  /\  .0.  =/=  X ) ) )
143, 13mpbid 222 . . . 4  |-  ( ph  ->  (  .0.  ( le
`  R ) X  /\  .0.  =/=  X
) )
1514simpld 475 . . 3  |-  ( ph  ->  .0.  ( le `  R ) X )
16 orngmullt.3 . . 3  |-  ( ph  ->  Y  e.  B )
17 orngmullt.y . . . . 5  |-  ( ph  ->  .0.  .<  Y )
1810, 11pltval 16960 . . . . . 6  |-  ( ( R  e. oRing  /\  .0.  e.  B  /\  Y  e.  B
)  ->  (  .0.  .<  Y 
<->  (  .0.  ( le
`  R ) Y  /\  .0.  =/=  Y
) ) )
191, 9, 16, 18syl3anc 1326 . . . . 5  |-  ( ph  ->  (  .0.  .<  Y  <->  (  .0.  ( le `  R ) Y  /\  .0.  =/=  Y ) ) )
2017, 19mpbid 222 . . . 4  |-  ( ph  ->  (  .0.  ( le
`  R ) Y  /\  .0.  =/=  Y
) )
2120simpld 475 . . 3  |-  ( ph  ->  .0.  ( le `  R ) Y )
22 orngmullt.t . . . 4  |-  .x.  =  ( .r `  R )
236, 10, 7, 22orngmul 29803 . . 3  |-  ( ( R  e. oRing  /\  ( X  e.  B  /\  .0.  ( le `  R
) X )  /\  ( Y  e.  B  /\  .0.  ( le `  R ) Y ) )  ->  .0.  ( le `  R ) ( X  .x.  Y ) )
241, 2, 15, 16, 21, 23syl122anc 1335 . 2  |-  ( ph  ->  .0.  ( le `  R ) ( X 
.x.  Y ) )
2514simprd 479 . . . . 5  |-  ( ph  ->  .0.  =/=  X )
2625necomd 2849 . . . 4  |-  ( ph  ->  X  =/=  .0.  )
2720simprd 479 . . . . 5  |-  ( ph  ->  .0.  =/=  Y )
2827necomd 2849 . . . 4  |-  ( ph  ->  Y  =/=  .0.  )
29 orngmullt.4 . . . . 5  |-  ( ph  ->  R  e.  DivRing )
306, 7, 22, 29, 2, 16drngmulne0 18769 . . . 4  |-  ( ph  ->  ( ( X  .x.  Y )  =/=  .0.  <->  ( X  =/=  .0.  /\  Y  =/=  .0.  ) ) )
3126, 28, 30mpbir2and 957 . . 3  |-  ( ph  ->  ( X  .x.  Y
)  =/=  .0.  )
3231necomd 2849 . 2  |-  ( ph  ->  .0.  =/=  ( X 
.x.  Y ) )
331, 4syl 17 . . . 4  |-  ( ph  ->  R  e.  Ring )
346, 22ringcl 18561 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .x.  Y )  e.  B )
3533, 2, 16, 34syl3anc 1326 . . 3  |-  ( ph  ->  ( X  .x.  Y
)  e.  B )
3610, 11pltval 16960 . . 3  |-  ( ( R  e. oRing  /\  .0.  e.  B  /\  ( X  .x.  Y )  e.  B
)  ->  (  .0.  .< 
( X  .x.  Y
)  <->  (  .0.  ( le `  R ) ( X  .x.  Y )  /\  .0.  =/=  ( X  .x.  Y ) ) ) )
371, 9, 35, 36syl3anc 1326 . 2  |-  ( ph  ->  (  .0.  .<  ( X  .x.  Y )  <->  (  .0.  ( le `  R ) ( X  .x.  Y
)  /\  .0.  =/=  ( X  .x.  Y ) ) ) )
3824, 32, 37mpbir2and 957 1  |-  ( ph  ->  .0.  .<  ( X  .x.  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   .rcmulr 15942   lecple 15948   0gc0g 16100   ltcplt 16941   Grpcgrp 17422   Ringcrg 18547   DivRingcdr 18747  oRingcorng 29795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-plt 16958  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-orng 29797
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator