MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjfval2 Structured version   Visualization version   Unicode version

Theorem pjfval2 20053
Description: Value of the projection map with implicit domain. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjfval2.o  |-  ._|_  =  ( ocv `  W )
pjfval2.p  |-  P  =  ( proj1 `  W )
pjfval2.k  |-  K  =  ( proj `  W
)
Assertion
Ref Expression
pjfval2  |-  K  =  ( x  e.  dom  K 
|->  ( x P ( 
._|_  `  x ) ) )
Distinct variable groups:    x, K    x, 
._|_    x, P    x, W

Proof of Theorem pjfval2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-mpt 4730 . . 3  |-  ( x  e.  ( LSubSp `  W
)  |->  ( x P (  ._|_  `  x ) ) )  =  { <. x ,  y >.  |  ( x  e.  ( LSubSp `  W )  /\  y  =  (
x P (  ._|_  `  x ) ) ) }
2 df-xp 5120 . . 3  |-  ( _V 
X.  ( ( Base `  W )  ^m  ( Base `  W ) ) )  =  { <. x ,  y >.  |  ( x  e.  _V  /\  y  e.  ( ( Base `  W )  ^m  ( Base `  W )
) ) }
31, 2ineq12i 3812 . 2  |-  ( ( x  e.  ( LSubSp `  W )  |->  ( x P (  ._|_  `  x
) ) )  i^i  ( _V  X.  (
( Base `  W )  ^m  ( Base `  W
) ) ) )  =  ( { <. x ,  y >.  |  ( x  e.  ( LSubSp `  W )  /\  y  =  ( x P (  ._|_  `  x ) ) ) }  i^i  {
<. x ,  y >.  |  ( x  e. 
_V  /\  y  e.  ( ( Base `  W
)  ^m  ( Base `  W ) ) ) } )
4 eqid 2622 . . 3  |-  ( Base `  W )  =  (
Base `  W )
5 eqid 2622 . . 3  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
6 pjfval2.o . . 3  |-  ._|_  =  ( ocv `  W )
7 pjfval2.p . . 3  |-  P  =  ( proj1 `  W )
8 pjfval2.k . . 3  |-  K  =  ( proj `  W
)
94, 5, 6, 7, 8pjfval 20050 . 2  |-  K  =  ( ( x  e.  ( LSubSp `  W )  |->  ( x P ( 
._|_  `  x ) ) )  i^i  ( _V 
X.  ( ( Base `  W )  ^m  ( Base `  W ) ) ) )
104, 5, 6, 7, 8pjdm 20051 . . . . . . 7  |-  ( x  e.  dom  K  <->  ( x  e.  ( LSubSp `  W )  /\  ( x P ( 
._|_  `  x ) ) : ( Base `  W
) --> ( Base `  W
) ) )
11 eleq1 2689 . . . . . . . . 9  |-  ( y  =  ( x P (  ._|_  `  x ) )  ->  ( y  e.  ( ( Base `  W
)  ^m  ( Base `  W ) )  <->  ( x P (  ._|_  `  x
) )  e.  ( ( Base `  W
)  ^m  ( Base `  W ) ) ) )
12 fvex 6201 . . . . . . . . . 10  |-  ( Base `  W )  e.  _V
1312, 12elmap 7886 . . . . . . . . 9  |-  ( ( x P (  ._|_  `  x ) )  e.  ( ( Base `  W
)  ^m  ( Base `  W ) )  <->  ( x P (  ._|_  `  x
) ) : (
Base `  W ) --> ( Base `  W )
)
1411, 13syl6rbb 277 . . . . . . . 8  |-  ( y  =  ( x P (  ._|_  `  x ) )  ->  ( (
x P (  ._|_  `  x ) ) : ( Base `  W
) --> ( Base `  W
)  <->  y  e.  ( ( Base `  W
)  ^m  ( Base `  W ) ) ) )
1514anbi2d 740 . . . . . . 7  |-  ( y  =  ( x P (  ._|_  `  x ) )  ->  ( (
x  e.  ( LSubSp `  W )  /\  (
x P (  ._|_  `  x ) ) : ( Base `  W
) --> ( Base `  W
) )  <->  ( x  e.  ( LSubSp `  W )  /\  y  e.  (
( Base `  W )  ^m  ( Base `  W
) ) ) ) )
1610, 15syl5bb 272 . . . . . 6  |-  ( y  =  ( x P (  ._|_  `  x ) )  ->  ( x  e.  dom  K  <->  ( x  e.  ( LSubSp `  W )  /\  y  e.  (
( Base `  W )  ^m  ( Base `  W
) ) ) ) )
1716pm5.32ri 670 . . . . 5  |-  ( ( x  e.  dom  K  /\  y  =  (
x P (  ._|_  `  x ) ) )  <-> 
( ( x  e.  ( LSubSp `  W )  /\  y  e.  (
( Base `  W )  ^m  ( Base `  W
) ) )  /\  y  =  ( x P (  ._|_  `  x
) ) ) )
18 an32 839 . . . . 5  |-  ( ( ( x  e.  (
LSubSp `  W )  /\  y  e.  ( ( Base `  W )  ^m  ( Base `  W )
) )  /\  y  =  ( x P (  ._|_  `  x ) ) )  <->  ( (
x  e.  ( LSubSp `  W )  /\  y  =  ( x P (  ._|_  `  x ) ) )  /\  y  e.  ( ( Base `  W
)  ^m  ( Base `  W ) ) ) )
19 vex 3203 . . . . . . 7  |-  x  e. 
_V
2019biantrur 527 . . . . . 6  |-  ( y  e.  ( ( Base `  W )  ^m  ( Base `  W ) )  <-> 
( x  e.  _V  /\  y  e.  ( (
Base `  W )  ^m  ( Base `  W
) ) ) )
2120anbi2i 730 . . . . 5  |-  ( ( ( x  e.  (
LSubSp `  W )  /\  y  =  ( x P (  ._|_  `  x
) ) )  /\  y  e.  ( ( Base `  W )  ^m  ( Base `  W )
) )  <->  ( (
x  e.  ( LSubSp `  W )  /\  y  =  ( x P (  ._|_  `  x ) ) )  /\  (
x  e.  _V  /\  y  e.  ( ( Base `  W )  ^m  ( Base `  W )
) ) ) )
2217, 18, 213bitri 286 . . . 4  |-  ( ( x  e.  dom  K  /\  y  =  (
x P (  ._|_  `  x ) ) )  <-> 
( ( x  e.  ( LSubSp `  W )  /\  y  =  (
x P (  ._|_  `  x ) ) )  /\  ( x  e. 
_V  /\  y  e.  ( ( Base `  W
)  ^m  ( Base `  W ) ) ) ) )
2322opabbii 4717 . . 3  |-  { <. x ,  y >.  |  ( x  e.  dom  K  /\  y  =  (
x P (  ._|_  `  x ) ) ) }  =  { <. x ,  y >.  |  ( ( x  e.  (
LSubSp `  W )  /\  y  =  ( x P (  ._|_  `  x
) ) )  /\  ( x  e.  _V  /\  y  e.  ( (
Base `  W )  ^m  ( Base `  W
) ) ) ) }
24 df-mpt 4730 . . 3  |-  ( x  e.  dom  K  |->  ( x P (  ._|_  `  x ) ) )  =  { <. x ,  y >.  |  ( x  e.  dom  K  /\  y  =  (
x P (  ._|_  `  x ) ) ) }
25 inopab 5252 . . 3  |-  ( {
<. x ,  y >.  |  ( x  e.  ( LSubSp `  W )  /\  y  =  (
x P (  ._|_  `  x ) ) ) }  i^i  { <. x ,  y >.  |  ( x  e.  _V  /\  y  e.  ( ( Base `  W )  ^m  ( Base `  W )
) ) } )  =  { <. x ,  y >.  |  ( ( x  e.  (
LSubSp `  W )  /\  y  =  ( x P (  ._|_  `  x
) ) )  /\  ( x  e.  _V  /\  y  e.  ( (
Base `  W )  ^m  ( Base `  W
) ) ) ) }
2623, 24, 253eqtr4i 2654 . 2  |-  ( x  e.  dom  K  |->  ( x P (  ._|_  `  x ) ) )  =  ( { <. x ,  y >.  |  ( x  e.  ( LSubSp `  W )  /\  y  =  ( x P (  ._|_  `  x ) ) ) }  i^i  {
<. x ,  y >.  |  ( x  e. 
_V  /\  y  e.  ( ( Base `  W
)  ^m  ( Base `  W ) ) ) } )
273, 9, 263eqtr4i 2654 1  |-  K  =  ( x  e.  dom  K 
|->  ( x P ( 
._|_  `  x ) ) )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573   {copab 4712    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Basecbs 15857   proj1cpj1 18050   LSubSpclss 18932   ocvcocv 20004   projcpj 20044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-pj 20047
This theorem is referenced by:  pjval  20054  pjff  20056
  Copyright terms: Public domain W3C validator