MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preddowncl Structured version   Visualization version   Unicode version

Theorem preddowncl 5707
Description: A property of classes that are downward closed under predecessor. (Contributed by Scott Fenton, 13-Apr-2011.)
Assertion
Ref Expression
preddowncl  |-  ( ( B  C_  A  /\  A. x  e.  B  Pred ( R ,  A ,  x )  C_  B
)  ->  ( X  e.  B  ->  Pred ( R ,  B ,  X )  =  Pred ( R ,  A ,  X ) ) )
Distinct variable groups:    x, A    x, B    x, R
Allowed substitution hint:    X( x)

Proof of Theorem preddowncl
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2689 . . . . 5  |-  ( y  =  X  ->  (
y  e.  B  <->  X  e.  B ) )
2 predeq3 5684 . . . . . 6  |-  ( y  =  X  ->  Pred ( R ,  B , 
y )  =  Pred ( R ,  B ,  X ) )
3 predeq3 5684 . . . . . 6  |-  ( y  =  X  ->  Pred ( R ,  A , 
y )  =  Pred ( R ,  A ,  X ) )
42, 3eqeq12d 2637 . . . . 5  |-  ( y  =  X  ->  ( Pred ( R ,  B ,  y )  = 
Pred ( R ,  A ,  y )  <->  Pred ( R ,  B ,  X )  =  Pred ( R ,  A ,  X ) ) )
51, 4imbi12d 334 . . . 4  |-  ( y  =  X  ->  (
( y  e.  B  ->  Pred ( R ,  B ,  y )  =  Pred ( R ,  A ,  y )
)  <->  ( X  e.  B  ->  Pred ( R ,  B ,  X
)  =  Pred ( R ,  A ,  X ) ) ) )
65imbi2d 330 . . 3  |-  ( y  =  X  ->  (
( ( B  C_  A  /\  A. x  e.  B  Pred ( R ,  A ,  x )  C_  B )  ->  (
y  e.  B  ->  Pred ( R ,  B ,  y )  = 
Pred ( R ,  A ,  y )
) )  <->  ( ( B  C_  A  /\  A. x  e.  B  Pred ( R ,  A ,  x )  C_  B
)  ->  ( X  e.  B  ->  Pred ( R ,  B ,  X )  =  Pred ( R ,  A ,  X ) ) ) ) )
7 predpredss 5686 . . . . . 6  |-  ( B 
C_  A  ->  Pred ( R ,  B , 
y )  C_  Pred ( R ,  A , 
y ) )
87ad2antrr 762 . . . . 5  |-  ( ( ( B  C_  A  /\  A. x  e.  B  Pred ( R ,  A ,  x )  C_  B
)  /\  y  e.  B )  ->  Pred ( R ,  B , 
y )  C_  Pred ( R ,  A , 
y ) )
9 predeq3 5684 . . . . . . . . . . . 12  |-  ( x  =  y  ->  Pred ( R ,  A ,  x )  =  Pred ( R ,  A , 
y ) )
109sseq1d 3632 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( Pred ( R ,  A ,  x )  C_  B  <->  Pred ( R ,  A ,  y )  C_  B ) )
1110rspccva 3308 . . . . . . . . . 10  |-  ( ( A. x  e.  B  Pred ( R ,  A ,  x )  C_  B  /\  y  e.  B
)  ->  Pred ( R ,  A ,  y )  C_  B )
1211sseld 3602 . . . . . . . . 9  |-  ( ( A. x  e.  B  Pred ( R ,  A ,  x )  C_  B  /\  y  e.  B
)  ->  ( z  e.  Pred ( R ,  A ,  y )  ->  z  e.  B ) )
13 vex 3203 . . . . . . . . . . 11  |-  y  e. 
_V
1413elpredim 5692 . . . . . . . . . 10  |-  ( z  e.  Pred ( R ,  A ,  y )  ->  z R y )
1514a1i 11 . . . . . . . . 9  |-  ( ( A. x  e.  B  Pred ( R ,  A ,  x )  C_  B  /\  y  e.  B
)  ->  ( z  e.  Pred ( R ,  A ,  y )  ->  z R y ) )
1612, 15jcad 555 . . . . . . . 8  |-  ( ( A. x  e.  B  Pred ( R ,  A ,  x )  C_  B  /\  y  e.  B
)  ->  ( z  e.  Pred ( R ,  A ,  y )  ->  ( z  e.  B  /\  z R y ) ) )
17 vex 3203 . . . . . . . . . . 11  |-  z  e. 
_V
1817elpred 5693 . . . . . . . . . 10  |-  ( y  e.  B  ->  (
z  e.  Pred ( R ,  B , 
y )  <->  ( z  e.  B  /\  z R y ) ) )
1918imbi2d 330 . . . . . . . . 9  |-  ( y  e.  B  ->  (
( z  e.  Pred ( R ,  A , 
y )  ->  z  e.  Pred ( R ,  B ,  y )
)  <->  ( z  e. 
Pred ( R ,  A ,  y )  ->  ( z  e.  B  /\  z R y ) ) ) )
2019adantl 482 . . . . . . . 8  |-  ( ( A. x  e.  B  Pred ( R ,  A ,  x )  C_  B  /\  y  e.  B
)  ->  ( (
z  e.  Pred ( R ,  A , 
y )  ->  z  e.  Pred ( R ,  B ,  y )
)  <->  ( z  e. 
Pred ( R ,  A ,  y )  ->  ( z  e.  B  /\  z R y ) ) ) )
2116, 20mpbird 247 . . . . . . 7  |-  ( ( A. x  e.  B  Pred ( R ,  A ,  x )  C_  B  /\  y  e.  B
)  ->  ( z  e.  Pred ( R ,  A ,  y )  ->  z  e.  Pred ( R ,  B , 
y ) ) )
2221ssrdv 3609 . . . . . 6  |-  ( ( A. x  e.  B  Pred ( R ,  A ,  x )  C_  B  /\  y  e.  B
)  ->  Pred ( R ,  A ,  y )  C_  Pred ( R ,  B ,  y ) )
2322adantll 750 . . . . 5  |-  ( ( ( B  C_  A  /\  A. x  e.  B  Pred ( R ,  A ,  x )  C_  B
)  /\  y  e.  B )  ->  Pred ( R ,  A , 
y )  C_  Pred ( R ,  B , 
y ) )
248, 23eqssd 3620 . . . 4  |-  ( ( ( B  C_  A  /\  A. x  e.  B  Pred ( R ,  A ,  x )  C_  B
)  /\  y  e.  B )  ->  Pred ( R ,  B , 
y )  =  Pred ( R ,  A , 
y ) )
2524ex 450 . . 3  |-  ( ( B  C_  A  /\  A. x  e.  B  Pred ( R ,  A ,  x )  C_  B
)  ->  ( y  e.  B  ->  Pred ( R ,  B , 
y )  =  Pred ( R ,  A , 
y ) ) )
266, 25vtoclg 3266 . 2  |-  ( X  e.  B  ->  (
( B  C_  A  /\  A. x  e.  B  Pred ( R ,  A ,  x )  C_  B
)  ->  ( X  e.  B  ->  Pred ( R ,  B ,  X )  =  Pred ( R ,  A ,  X ) ) ) )
2726pm2.43b 55 1  |-  ( ( B  C_  A  /\  A. x  e.  B  Pred ( R ,  A ,  x )  C_  B
)  ->  ( X  e.  B  ->  Pred ( R ,  B ,  X )  =  Pred ( R ,  A ,  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   class class class wbr 4653   Predcpred 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680
This theorem is referenced by:  wfrlem4  7418  frrlem4  31783
  Copyright terms: Public domain W3C validator