| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preddowncl | Structured version Visualization version Unicode version | ||
| Description: A property of classes that are downward closed under predecessor. (Contributed by Scott Fenton, 13-Apr-2011.) |
| Ref | Expression |
|---|---|
| preddowncl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2689 |
. . . . 5
| |
| 2 | predeq3 5684 |
. . . . . 6
| |
| 3 | predeq3 5684 |
. . . . . 6
| |
| 4 | 2, 3 | eqeq12d 2637 |
. . . . 5
|
| 5 | 1, 4 | imbi12d 334 |
. . . 4
|
| 6 | 5 | imbi2d 330 |
. . 3
|
| 7 | predpredss 5686 |
. . . . . 6
| |
| 8 | 7 | ad2antrr 762 |
. . . . 5
|
| 9 | predeq3 5684 |
. . . . . . . . . . . 12
| |
| 10 | 9 | sseq1d 3632 |
. . . . . . . . . . 11
|
| 11 | 10 | rspccva 3308 |
. . . . . . . . . 10
|
| 12 | 11 | sseld 3602 |
. . . . . . . . 9
|
| 13 | vex 3203 |
. . . . . . . . . . 11
| |
| 14 | 13 | elpredim 5692 |
. . . . . . . . . 10
|
| 15 | 14 | a1i 11 |
. . . . . . . . 9
|
| 16 | 12, 15 | jcad 555 |
. . . . . . . 8
|
| 17 | vex 3203 |
. . . . . . . . . . 11
| |
| 18 | 17 | elpred 5693 |
. . . . . . . . . 10
|
| 19 | 18 | imbi2d 330 |
. . . . . . . . 9
|
| 20 | 19 | adantl 482 |
. . . . . . . 8
|
| 21 | 16, 20 | mpbird 247 |
. . . . . . 7
|
| 22 | 21 | ssrdv 3609 |
. . . . . 6
|
| 23 | 22 | adantll 750 |
. . . . 5
|
| 24 | 8, 23 | eqssd 3620 |
. . . 4
|
| 25 | 24 | ex 450 |
. . 3
|
| 26 | 6, 25 | vtoclg 3266 |
. 2
|
| 27 | 26 | pm2.43b 55 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 |
| This theorem is referenced by: wfrlem4 7418 frrlem4 31783 |
| Copyright terms: Public domain | W3C validator |