MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prf2 Structured version   Visualization version   Unicode version

Theorem prf2 16842
Description: Value of the pairing functor on morphisms. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
prfval.k  |-  P  =  ( F ⟨,⟩F  G )
prfval.b  |-  B  =  ( Base `  C
)
prfval.h  |-  H  =  ( Hom  `  C
)
prfval.c  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
prfval.d  |-  ( ph  ->  G  e.  ( C 
Func  E ) )
prf1.x  |-  ( ph  ->  X  e.  B )
prf2.y  |-  ( ph  ->  Y  e.  B )
prf2.k  |-  ( ph  ->  K  e.  ( X H Y ) )
Assertion
Ref Expression
prf2  |-  ( ph  ->  ( ( X ( 2nd `  P ) Y ) `  K
)  =  <. (
( X ( 2nd `  F ) Y ) `
 K ) ,  ( ( X ( 2nd `  G ) Y ) `  K
) >. )

Proof of Theorem prf2
Dummy variable  h is distinct from all other variables.
StepHypRef Expression
1 prfval.k . . 3  |-  P  =  ( F ⟨,⟩F  G )
2 prfval.b . . 3  |-  B  =  ( Base `  C
)
3 prfval.h . . 3  |-  H  =  ( Hom  `  C
)
4 prfval.c . . 3  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
5 prfval.d . . 3  |-  ( ph  ->  G  e.  ( C 
Func  E ) )
6 prf1.x . . 3  |-  ( ph  ->  X  e.  B )
7 prf2.y . . 3  |-  ( ph  ->  Y  e.  B )
81, 2, 3, 4, 5, 6, 7prf2fval 16841 . 2  |-  ( ph  ->  ( X ( 2nd `  P ) Y )  =  ( h  e.  ( X H Y )  |->  <. ( ( X ( 2nd `  F
) Y ) `  h ) ,  ( ( X ( 2nd `  G ) Y ) `
 h ) >.
) )
9 simpr 477 . . . 4  |-  ( (
ph  /\  h  =  K )  ->  h  =  K )
109fveq2d 6195 . . 3  |-  ( (
ph  /\  h  =  K )  ->  (
( X ( 2nd `  F ) Y ) `
 h )  =  ( ( X ( 2nd `  F ) Y ) `  K
) )
119fveq2d 6195 . . 3  |-  ( (
ph  /\  h  =  K )  ->  (
( X ( 2nd `  G ) Y ) `
 h )  =  ( ( X ( 2nd `  G ) Y ) `  K
) )
1210, 11opeq12d 4410 . 2  |-  ( (
ph  /\  h  =  K )  ->  <. (
( X ( 2nd `  F ) Y ) `
 h ) ,  ( ( X ( 2nd `  G ) Y ) `  h
) >.  =  <. (
( X ( 2nd `  F ) Y ) `
 K ) ,  ( ( X ( 2nd `  G ) Y ) `  K
) >. )
13 prf2.k . 2  |-  ( ph  ->  K  e.  ( X H Y ) )
14 opex 4932 . . 3  |-  <. (
( X ( 2nd `  F ) Y ) `
 K ) ,  ( ( X ( 2nd `  G ) Y ) `  K
) >.  e.  _V
1514a1i 11 . 2  |-  ( ph  -> 
<. ( ( X ( 2nd `  F ) Y ) `  K
) ,  ( ( X ( 2nd `  G
) Y ) `  K ) >.  e.  _V )
168, 12, 13, 15fvmptd 6288 1  |-  ( ph  ->  ( ( X ( 2nd `  P ) Y ) `  K
)  =  <. (
( X ( 2nd `  F ) Y ) `
 K ) ,  ( ( X ( 2nd `  G ) Y ) `  K
) >. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183   ` cfv 5888  (class class class)co 6650   2ndc2nd 7167   Basecbs 15857   Hom chom 15952    Func cfunc 16514   ⟨,⟩F cprf 16811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-ixp 7909  df-func 16518  df-prf 16815
This theorem is referenced by:  prfcl  16843  prf1st  16844  prf2nd  16845  uncf2  16877  yonedalem22  16918
  Copyright terms: Public domain W3C validator