MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prf2fval Structured version   Visualization version   Unicode version

Theorem prf2fval 16841
Description: Value of the pairing functor on morphisms. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
prfval.k  |-  P  =  ( F ⟨,⟩F  G )
prfval.b  |-  B  =  ( Base `  C
)
prfval.h  |-  H  =  ( Hom  `  C
)
prfval.c  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
prfval.d  |-  ( ph  ->  G  e.  ( C 
Func  E ) )
prf1.x  |-  ( ph  ->  X  e.  B )
prf2.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
prf2fval  |-  ( ph  ->  ( X ( 2nd `  P ) Y )  =  ( h  e.  ( X H Y )  |->  <. ( ( X ( 2nd `  F
) Y ) `  h ) ,  ( ( X ( 2nd `  G ) Y ) `
 h ) >.
) )
Distinct variable groups:    B, h    h, F    ph, h    h, G    h, X    h, Y    h, H
Allowed substitution hints:    C( h)    D( h)    P( h)    E( h)

Proof of Theorem prf2fval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prfval.k . . . 4  |-  P  =  ( F ⟨,⟩F  G )
2 prfval.b . . . 4  |-  B  =  ( Base `  C
)
3 prfval.h . . . 4  |-  H  =  ( Hom  `  C
)
4 prfval.c . . . 4  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
5 prfval.d . . . 4  |-  ( ph  ->  G  e.  ( C 
Func  E ) )
61, 2, 3, 4, 5prfval 16839 . . 3  |-  ( ph  ->  P  =  <. (
x  e.  B  |->  <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. ) ,  ( x  e.  B , 
y  e.  B  |->  ( h  e.  ( x H y )  |->  <.
( ( x ( 2nd `  F ) y ) `  h
) ,  ( ( x ( 2nd `  G
) y ) `  h ) >. )
) >. )
7 fvex 6201 . . . . . 6  |-  ( Base `  C )  e.  _V
82, 7eqeltri 2697 . . . . 5  |-  B  e. 
_V
98mptex 6486 . . . 4  |-  ( x  e.  B  |->  <. (
( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. )  e.  _V
108, 8mpt2ex 7247 . . . 4  |-  ( x  e.  B ,  y  e.  B  |->  ( h  e.  ( x H y )  |->  <. (
( x ( 2nd `  F ) y ) `
 h ) ,  ( ( x ( 2nd `  G ) y ) `  h
) >. ) )  e. 
_V
119, 10op2ndd 7179 . . 3  |-  ( P  =  <. ( x  e.  B  |->  <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.
) ,  ( x  e.  B ,  y  e.  B  |->  ( h  e.  ( x H y )  |->  <. (
( x ( 2nd `  F ) y ) `
 h ) ,  ( ( x ( 2nd `  G ) y ) `  h
) >. ) ) >.  ->  ( 2nd `  P
)  =  ( x  e.  B ,  y  e.  B  |->  ( h  e.  ( x H y )  |->  <. (
( x ( 2nd `  F ) y ) `
 h ) ,  ( ( x ( 2nd `  G ) y ) `  h
) >. ) ) )
126, 11syl 17 . 2  |-  ( ph  ->  ( 2nd `  P
)  =  ( x  e.  B ,  y  e.  B  |->  ( h  e.  ( x H y )  |->  <. (
( x ( 2nd `  F ) y ) `
 h ) ,  ( ( x ( 2nd `  G ) y ) `  h
) >. ) ) )
13 simprl 794 . . . 4  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  ->  x  =  X )
14 simprr 796 . . . 4  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
y  =  Y )
1513, 14oveq12d 6668 . . 3  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( x H y )  =  ( X H Y ) )
1613, 14oveq12d 6668 . . . . 5  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( x ( 2nd `  F ) y )  =  ( X ( 2nd `  F ) Y ) )
1716fveq1d 6193 . . . 4  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( ( x ( 2nd `  F ) y ) `  h
)  =  ( ( X ( 2nd `  F
) Y ) `  h ) )
1813, 14oveq12d 6668 . . . . 5  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( x ( 2nd `  G ) y )  =  ( X ( 2nd `  G ) Y ) )
1918fveq1d 6193 . . . 4  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( ( x ( 2nd `  G ) y ) `  h
)  =  ( ( X ( 2nd `  G
) Y ) `  h ) )
2017, 19opeq12d 4410 . . 3  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  ->  <. ( ( x ( 2nd `  F ) y ) `  h
) ,  ( ( x ( 2nd `  G
) y ) `  h ) >.  =  <. ( ( X ( 2nd `  F ) Y ) `
 h ) ,  ( ( X ( 2nd `  G ) Y ) `  h
) >. )
2115, 20mpteq12dv 4733 . 2  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( h  e.  ( x H y ) 
|->  <. ( ( x ( 2nd `  F
) y ) `  h ) ,  ( ( x ( 2nd `  G ) y ) `
 h ) >.
)  =  ( h  e.  ( X H Y )  |->  <. (
( X ( 2nd `  F ) Y ) `
 h ) ,  ( ( X ( 2nd `  G ) Y ) `  h
) >. ) )
22 prf1.x . 2  |-  ( ph  ->  X  e.  B )
23 prf2.y . 2  |-  ( ph  ->  Y  e.  B )
24 ovex 6678 . . . 4  |-  ( X H Y )  e. 
_V
2524mptex 6486 . . 3  |-  ( h  e.  ( X H Y )  |->  <. (
( X ( 2nd `  F ) Y ) `
 h ) ,  ( ( X ( 2nd `  G ) Y ) `  h
) >. )  e.  _V
2625a1i 11 . 2  |-  ( ph  ->  ( h  e.  ( X H Y ) 
|->  <. ( ( X ( 2nd `  F
) Y ) `  h ) ,  ( ( X ( 2nd `  G ) Y ) `
 h ) >.
)  e.  _V )
2712, 21, 22, 23, 26ovmpt2d 6788 1  |-  ( ph  ->  ( X ( 2nd `  P ) Y )  =  ( h  e.  ( X H Y )  |->  <. ( ( X ( 2nd `  F
) Y ) `  h ) ,  ( ( X ( 2nd `  G ) Y ) `
 h ) >.
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   Basecbs 15857   Hom chom 15952    Func cfunc 16514   ⟨,⟩F cprf 16811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-ixp 7909  df-func 16518  df-prf 16815
This theorem is referenced by:  prf2  16842
  Copyright terms: Public domain W3C validator