MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uncf2 Structured version   Visualization version   Unicode version

Theorem uncf2 16877
Description: Value of the uncurry functor on a morphism. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
uncfval.g  |-  F  =  ( <" C D E "> uncurryF  G )
uncfval.c  |-  ( ph  ->  D  e.  Cat )
uncfval.d  |-  ( ph  ->  E  e.  Cat )
uncfval.f  |-  ( ph  ->  G  e.  ( C 
Func  ( D FuncCat  E
) ) )
uncf1.a  |-  A  =  ( Base `  C
)
uncf1.b  |-  B  =  ( Base `  D
)
uncf1.x  |-  ( ph  ->  X  e.  A )
uncf1.y  |-  ( ph  ->  Y  e.  B )
uncf2.h  |-  H  =  ( Hom  `  C
)
uncf2.j  |-  J  =  ( Hom  `  D
)
uncf2.z  |-  ( ph  ->  Z  e.  A )
uncf2.w  |-  ( ph  ->  W  e.  B )
uncf2.r  |-  ( ph  ->  R  e.  ( X H Z ) )
uncf2.s  |-  ( ph  ->  S  e.  ( Y J W ) )
Assertion
Ref Expression
uncf2  |-  ( ph  ->  ( R ( <. X ,  Y >. ( 2nd `  F )
<. Z ,  W >. ) S )  =  ( ( ( ( X ( 2nd `  G
) Z ) `  R ) `  W
) ( <. (
( 1st `  (
( 1st `  G
) `  X )
) `  Y ) ,  ( ( 1st `  ( ( 1st `  G
) `  X )
) `  W ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  Z )
) `  W )
) ( ( Y ( 2nd `  (
( 1st `  G
) `  X )
) W ) `  S ) ) )

Proof of Theorem uncf2
StepHypRef Expression
1 uncfval.g . . . . . . 7  |-  F  =  ( <" C D E "> uncurryF  G )
2 uncfval.c . . . . . . 7  |-  ( ph  ->  D  e.  Cat )
3 uncfval.d . . . . . . 7  |-  ( ph  ->  E  e.  Cat )
4 uncfval.f . . . . . . 7  |-  ( ph  ->  G  e.  ( C 
Func  ( D FuncCat  E
) ) )
51, 2, 3, 4uncfval 16874 . . . . . 6  |-  ( ph  ->  F  =  ( ( D evalF 
E )  o.func  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) )
65fveq2d 6195 . . . . 5  |-  ( ph  ->  ( 2nd `  F
)  =  ( 2nd `  ( ( D evalF  E )  o.func  ( ( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
) ) ) )
76oveqd 6667 . . . 4  |-  ( ph  ->  ( <. X ,  Y >. ( 2nd `  F
) <. Z ,  W >. )  =  ( <. X ,  Y >. ( 2nd `  ( ( D evalF 
E )  o.func  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) ) <. Z ,  W >. ) )
87oveqd 6667 . . 3  |-  ( ph  ->  ( R ( <. X ,  Y >. ( 2nd `  F )
<. Z ,  W >. ) S )  =  ( R ( <. X ,  Y >. ( 2nd `  (
( D evalF  E )  o.func  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) ) <. Z ,  W >. ) S ) )
9 df-ov 6653 . . . 4  |-  ( R ( <. X ,  Y >. ( 2nd `  (
( D evalF  E )  o.func  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) ) <. Z ,  W >. ) S )  =  ( ( <. X ,  Y >. ( 2nd `  (
( D evalF  E )  o.func  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) ) <. Z ,  W >. ) `  <. R ,  S >. )
10 eqid 2622 . . . . . 6  |-  ( C  X.c  D )  =  ( C  X.c  D )
11 uncf1.a . . . . . 6  |-  A  =  ( Base `  C
)
12 uncf1.b . . . . . 6  |-  B  =  ( Base `  D
)
1310, 11, 12xpcbas 16818 . . . . 5  |-  ( A  X.  B )  =  ( Base `  ( C  X.c  D ) )
14 eqid 2622 . . . . . 6  |-  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) )  =  ( ( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
)
15 eqid 2622 . . . . . 6  |-  ( ( D FuncCat  E )  X.c  D )  =  ( ( D FuncCat  E )  X.c  D )
16 funcrcl 16523 . . . . . . . . . 10  |-  ( G  e.  ( C  Func  ( D FuncCat  E ) )  -> 
( C  e.  Cat  /\  ( D FuncCat  E )  e.  Cat ) )
174, 16syl 17 . . . . . . . . 9  |-  ( ph  ->  ( C  e.  Cat  /\  ( D FuncCat  E )  e.  Cat ) )
1817simpld 475 . . . . . . . 8  |-  ( ph  ->  C  e.  Cat )
19 eqid 2622 . . . . . . . 8  |-  ( C  1stF  D )  =  ( C  1stF  D )
2010, 18, 2, 191stfcl 16837 . . . . . . 7  |-  ( ph  ->  ( C  1stF  D )  e.  ( ( C  X.c  D
)  Func  C )
)
2120, 4cofucl 16548 . . . . . 6  |-  ( ph  ->  ( G  o.func  ( C  1stF  D ) )  e.  ( ( C  X.c  D ) 
Func  ( D FuncCat  E
) ) )
22 eqid 2622 . . . . . . 7  |-  ( C  2ndF  D )  =  ( C  2ndF  D )
2310, 18, 2, 222ndfcl 16838 . . . . . 6  |-  ( ph  ->  ( C  2ndF  D )  e.  ( ( C  X.c  D
)  Func  D )
)
2414, 15, 21, 23prfcl 16843 . . . . 5  |-  ( ph  ->  ( ( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
)  e.  ( ( C  X.c  D )  Func  (
( D FuncCat  E )  X.c  D ) ) )
25 eqid 2622 . . . . . 6  |-  ( D evalF  E
)  =  ( D evalF  E
)
26 eqid 2622 . . . . . 6  |-  ( D FuncCat  E )  =  ( D FuncCat  E )
2725, 26, 2, 3evlfcl 16862 . . . . 5  |-  ( ph  ->  ( D evalF  E )  e.  ( ( ( D FuncCat  E
)  X.c  D )  Func  E
) )
28 uncf1.x . . . . . 6  |-  ( ph  ->  X  e.  A )
29 uncf1.y . . . . . 6  |-  ( ph  ->  Y  e.  B )
30 opelxpi 5148 . . . . . 6  |-  ( ( X  e.  A  /\  Y  e.  B )  -> 
<. X ,  Y >.  e.  ( A  X.  B
) )
3128, 29, 30syl2anc 693 . . . . 5  |-  ( ph  -> 
<. X ,  Y >.  e.  ( A  X.  B
) )
32 uncf2.z . . . . . 6  |-  ( ph  ->  Z  e.  A )
33 uncf2.w . . . . . 6  |-  ( ph  ->  W  e.  B )
34 opelxpi 5148 . . . . . 6  |-  ( ( Z  e.  A  /\  W  e.  B )  -> 
<. Z ,  W >.  e.  ( A  X.  B
) )
3532, 33, 34syl2anc 693 . . . . 5  |-  ( ph  -> 
<. Z ,  W >.  e.  ( A  X.  B
) )
36 eqid 2622 . . . . 5  |-  ( Hom  `  ( C  X.c  D ) )  =  ( Hom  `  ( C  X.c  D ) )
37 uncf2.r . . . . . . 7  |-  ( ph  ->  R  e.  ( X H Z ) )
38 uncf2.s . . . . . . 7  |-  ( ph  ->  S  e.  ( Y J W ) )
39 opelxpi 5148 . . . . . . 7  |-  ( ( R  e.  ( X H Z )  /\  S  e.  ( Y J W ) )  ->  <. R ,  S >.  e.  ( ( X H Z )  X.  ( Y J W ) ) )
4037, 38, 39syl2anc 693 . . . . . 6  |-  ( ph  -> 
<. R ,  S >.  e.  ( ( X H Z )  X.  ( Y J W ) ) )
41 uncf2.h . . . . . . 7  |-  H  =  ( Hom  `  C
)
42 uncf2.j . . . . . . 7  |-  J  =  ( Hom  `  D
)
4310, 11, 12, 41, 42, 28, 29, 32, 33, 36xpchom2 16826 . . . . . 6  |-  ( ph  ->  ( <. X ,  Y >. ( Hom  `  ( C  X.c  D ) ) <. Z ,  W >. )  =  ( ( X H Z )  X.  ( Y J W ) ) )
4440, 43eleqtrrd 2704 . . . . 5  |-  ( ph  -> 
<. R ,  S >.  e.  ( <. X ,  Y >. ( Hom  `  ( C  X.c  D ) ) <. Z ,  W >. ) )
4513, 24, 27, 31, 35, 36, 44cofu2 16546 . . . 4  |-  ( ph  ->  ( ( <. X ,  Y >. ( 2nd `  (
( D evalF  E )  o.func  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) ) <. Z ,  W >. ) `  <. R ,  S >. )  =  ( ( ( ( 1st `  ( ( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
) ) `  <. X ,  Y >. )
( 2nd `  ( D evalF  E ) ) ( ( 1st `  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) `
 <. Z ,  W >. ) ) `  (
( <. X ,  Y >. ( 2nd `  (
( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
) ) <. Z ,  W >. ) `  <. R ,  S >. )
) )
469, 45syl5eq 2668 . . 3  |-  ( ph  ->  ( R ( <. X ,  Y >. ( 2nd `  ( ( D evalF 
E )  o.func  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) ) <. Z ,  W >. ) S )  =  ( ( ( ( 1st `  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) `
 <. X ,  Y >. ) ( 2nd `  ( D evalF  E ) ) ( ( 1st `  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) `
 <. Z ,  W >. ) ) `  (
( <. X ,  Y >. ( 2nd `  (
( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
) ) <. Z ,  W >. ) `  <. R ,  S >. )
) )
478, 46eqtrd 2656 . 2  |-  ( ph  ->  ( R ( <. X ,  Y >. ( 2nd `  F )
<. Z ,  W >. ) S )  =  ( ( ( ( 1st `  ( ( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
) ) `  <. X ,  Y >. )
( 2nd `  ( D evalF  E ) ) ( ( 1st `  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) `
 <. Z ,  W >. ) ) `  (
( <. X ,  Y >. ( 2nd `  (
( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
) ) <. Z ,  W >. ) `  <. R ,  S >. )
) )
4814, 13, 36, 21, 23, 31prf1 16840 . . . . . 6  |-  ( ph  ->  ( ( 1st `  (
( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
) ) `  <. X ,  Y >. )  =  <. ( ( 1st `  ( G  o.func  ( C  1stF  D ) ) ) `  <. X ,  Y >. ) ,  ( ( 1st `  ( C  2ndF  D )
) `  <. X ,  Y >. ) >. )
4913, 20, 4, 31cofu1 16544 . . . . . . . 8  |-  ( ph  ->  ( ( 1st `  ( G  o.func  ( C  1stF  D )
) ) `  <. X ,  Y >. )  =  ( ( 1st `  G ) `  (
( 1st `  ( C  1stF  D ) ) `  <. X ,  Y >. ) ) )
5010, 13, 36, 18, 2, 19, 311stf1 16832 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1st `  ( C  1stF  D ) ) `  <. X ,  Y >. )  =  ( 1st `  <. X ,  Y >. )
)
51 op1stg 7180 . . . . . . . . . . 11  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( 1st `  <. X ,  Y >. )  =  X )
5228, 29, 51syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  ( 1st `  <. X ,  Y >. )  =  X )
5350, 52eqtrd 2656 . . . . . . . . 9  |-  ( ph  ->  ( ( 1st `  ( C  1stF  D ) ) `  <. X ,  Y >. )  =  X )
5453fveq2d 6195 . . . . . . . 8  |-  ( ph  ->  ( ( 1st `  G
) `  ( ( 1st `  ( C  1stF  D ) ) `  <. X ,  Y >. ) )  =  ( ( 1st `  G
) `  X )
)
5549, 54eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( ( 1st `  ( G  o.func  ( C  1stF  D )
) ) `  <. X ,  Y >. )  =  ( ( 1st `  G ) `  X
) )
5610, 13, 36, 18, 2, 22, 312ndf1 16835 . . . . . . . 8  |-  ( ph  ->  ( ( 1st `  ( C  2ndF  D ) ) `  <. X ,  Y >. )  =  ( 2nd `  <. X ,  Y >. )
)
57 op2ndg 7181 . . . . . . . . 9  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( 2nd `  <. X ,  Y >. )  =  Y )
5828, 29, 57syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( 2nd `  <. X ,  Y >. )  =  Y )
5956, 58eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( ( 1st `  ( C  2ndF  D ) ) `  <. X ,  Y >. )  =  Y )
6055, 59opeq12d 4410 . . . . . 6  |-  ( ph  -> 
<. ( ( 1st `  ( G  o.func  ( C  1stF  D )
) ) `  <. X ,  Y >. ) ,  ( ( 1st `  ( C  2ndF  D )
) `  <. X ,  Y >. ) >.  =  <. ( ( 1st `  G
) `  X ) ,  Y >. )
6148, 60eqtrd 2656 . . . . 5  |-  ( ph  ->  ( ( 1st `  (
( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
) ) `  <. X ,  Y >. )  =  <. ( ( 1st `  G ) `  X
) ,  Y >. )
6214, 13, 36, 21, 23, 35prf1 16840 . . . . . 6  |-  ( ph  ->  ( ( 1st `  (
( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
) ) `  <. Z ,  W >. )  =  <. ( ( 1st `  ( G  o.func  ( C  1stF  D ) ) ) `  <. Z ,  W >. ) ,  ( ( 1st `  ( C  2ndF  D )
) `  <. Z ,  W >. ) >. )
6313, 20, 4, 35cofu1 16544 . . . . . . . 8  |-  ( ph  ->  ( ( 1st `  ( G  o.func  ( C  1stF  D )
) ) `  <. Z ,  W >. )  =  ( ( 1st `  G ) `  (
( 1st `  ( C  1stF  D ) ) `  <. Z ,  W >. ) ) )
6410, 13, 36, 18, 2, 19, 351stf1 16832 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1st `  ( C  1stF  D ) ) `  <. Z ,  W >. )  =  ( 1st `  <. Z ,  W >. )
)
65 op1stg 7180 . . . . . . . . . . 11  |-  ( ( Z  e.  A  /\  W  e.  B )  ->  ( 1st `  <. Z ,  W >. )  =  Z )
6632, 33, 65syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  ( 1st `  <. Z ,  W >. )  =  Z )
6764, 66eqtrd 2656 . . . . . . . . 9  |-  ( ph  ->  ( ( 1st `  ( C  1stF  D ) ) `  <. Z ,  W >. )  =  Z )
6867fveq2d 6195 . . . . . . . 8  |-  ( ph  ->  ( ( 1st `  G
) `  ( ( 1st `  ( C  1stF  D ) ) `  <. Z ,  W >. ) )  =  ( ( 1st `  G
) `  Z )
)
6963, 68eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( ( 1st `  ( G  o.func  ( C  1stF  D )
) ) `  <. Z ,  W >. )  =  ( ( 1st `  G ) `  Z
) )
7010, 13, 36, 18, 2, 22, 352ndf1 16835 . . . . . . . 8  |-  ( ph  ->  ( ( 1st `  ( C  2ndF  D ) ) `  <. Z ,  W >. )  =  ( 2nd `  <. Z ,  W >. )
)
71 op2ndg 7181 . . . . . . . . 9  |-  ( ( Z  e.  A  /\  W  e.  B )  ->  ( 2nd `  <. Z ,  W >. )  =  W )
7232, 33, 71syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( 2nd `  <. Z ,  W >. )  =  W )
7370, 72eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( ( 1st `  ( C  2ndF  D ) ) `  <. Z ,  W >. )  =  W )
7469, 73opeq12d 4410 . . . . . 6  |-  ( ph  -> 
<. ( ( 1st `  ( G  o.func  ( C  1stF  D )
) ) `  <. Z ,  W >. ) ,  ( ( 1st `  ( C  2ndF  D )
) `  <. Z ,  W >. ) >.  =  <. ( ( 1st `  G
) `  Z ) ,  W >. )
7562, 74eqtrd 2656 . . . . 5  |-  ( ph  ->  ( ( 1st `  (
( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
) ) `  <. Z ,  W >. )  =  <. ( ( 1st `  G ) `  Z
) ,  W >. )
7661, 75oveq12d 6668 . . . 4  |-  ( ph  ->  ( ( ( 1st `  ( ( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
) ) `  <. X ,  Y >. )
( 2nd `  ( D evalF  E ) ) ( ( 1st `  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) `
 <. Z ,  W >. ) )  =  (
<. ( ( 1st `  G
) `  X ) ,  Y >. ( 2nd `  ( D evalF  E ) ) <. (
( 1st `  G
) `  Z ) ,  W >. ) )
7714, 13, 36, 21, 23, 31, 35, 44prf2 16842 . . . . 5  |-  ( ph  ->  ( ( <. X ,  Y >. ( 2nd `  (
( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
) ) <. Z ,  W >. ) `  <. R ,  S >. )  =  <. ( ( <. X ,  Y >. ( 2nd `  ( G  o.func  ( C  1stF  D )
) ) <. Z ,  W >. ) `  <. R ,  S >. ) ,  ( ( <. X ,  Y >. ( 2nd `  ( C  2ndF  D ) ) <. Z ,  W >. ) `
 <. R ,  S >. ) >. )
7813, 20, 4, 31, 35, 36, 44cofu2 16546 . . . . . . 7  |-  ( ph  ->  ( ( <. X ,  Y >. ( 2nd `  ( G  o.func  ( C  1stF  D )
) ) <. Z ,  W >. ) `  <. R ,  S >. )  =  ( ( ( ( 1st `  ( C  1stF  D ) ) `  <. X ,  Y >. ) ( 2nd `  G
) ( ( 1st `  ( C  1stF  D )
) `  <. Z ,  W >. ) ) `  ( ( <. X ,  Y >. ( 2nd `  ( C  1stF  D ) ) <. Z ,  W >. ) `
 <. R ,  S >. ) ) )
7953, 67oveq12d 6668 . . . . . . . 8  |-  ( ph  ->  ( ( ( 1st `  ( C  1stF  D )
) `  <. X ,  Y >. ) ( 2nd `  G ) ( ( 1st `  ( C  1stF  D ) ) `  <. Z ,  W >. ) )  =  ( X ( 2nd `  G
) Z ) )
8010, 13, 36, 18, 2, 19, 31, 351stf2 16833 . . . . . . . . . 10  |-  ( ph  ->  ( <. X ,  Y >. ( 2nd `  ( C  1stF  D ) ) <. Z ,  W >. )  =  ( 1st  |`  ( <. X ,  Y >. ( Hom  `  ( C  X.c  D ) ) <. Z ,  W >. ) ) )
8180fveq1d 6193 . . . . . . . . 9  |-  ( ph  ->  ( ( <. X ,  Y >. ( 2nd `  ( C  1stF  D ) ) <. Z ,  W >. ) `
 <. R ,  S >. )  =  ( ( 1st  |`  ( <. X ,  Y >. ( Hom  `  ( C  X.c  D
) ) <. Z ,  W >. ) ) `  <. R ,  S >. ) )
82 fvres 6207 . . . . . . . . . 10  |-  ( <. R ,  S >.  e.  ( <. X ,  Y >. ( Hom  `  ( C  X.c  D ) ) <. Z ,  W >. )  ->  ( ( 1st  |`  ( <. X ,  Y >. ( Hom  `  ( C  X.c  D ) ) <. Z ,  W >. ) ) `  <. R ,  S >. )  =  ( 1st `  <. R ,  S >. ) )
8344, 82syl 17 . . . . . . . . 9  |-  ( ph  ->  ( ( 1st  |`  ( <. X ,  Y >. ( Hom  `  ( C  X.c  D ) ) <. Z ,  W >. ) ) `  <. R ,  S >. )  =  ( 1st `  <. R ,  S >. ) )
84 op1stg 7180 . . . . . . . . . 10  |-  ( ( R  e.  ( X H Z )  /\  S  e.  ( Y J W ) )  -> 
( 1st `  <. R ,  S >. )  =  R )
8537, 38, 84syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( 1st `  <. R ,  S >. )  =  R )
8681, 83, 853eqtrd 2660 . . . . . . . 8  |-  ( ph  ->  ( ( <. X ,  Y >. ( 2nd `  ( C  1stF  D ) ) <. Z ,  W >. ) `
 <. R ,  S >. )  =  R )
8779, 86fveq12d 6197 . . . . . . 7  |-  ( ph  ->  ( ( ( ( 1st `  ( C  1stF  D ) ) `  <. X ,  Y >. ) ( 2nd `  G
) ( ( 1st `  ( C  1stF  D )
) `  <. Z ,  W >. ) ) `  ( ( <. X ,  Y >. ( 2nd `  ( C  1stF  D ) ) <. Z ,  W >. ) `
 <. R ,  S >. ) )  =  ( ( X ( 2nd `  G ) Z ) `
 R ) )
8878, 87eqtrd 2656 . . . . . 6  |-  ( ph  ->  ( ( <. X ,  Y >. ( 2nd `  ( G  o.func  ( C  1stF  D )
) ) <. Z ,  W >. ) `  <. R ,  S >. )  =  ( ( X ( 2nd `  G
) Z ) `  R ) )
8910, 13, 36, 18, 2, 22, 31, 352ndf2 16836 . . . . . . . 8  |-  ( ph  ->  ( <. X ,  Y >. ( 2nd `  ( C  2ndF  D ) ) <. Z ,  W >. )  =  ( 2nd  |`  ( <. X ,  Y >. ( Hom  `  ( C  X.c  D ) ) <. Z ,  W >. ) ) )
9089fveq1d 6193 . . . . . . 7  |-  ( ph  ->  ( ( <. X ,  Y >. ( 2nd `  ( C  2ndF  D ) ) <. Z ,  W >. ) `
 <. R ,  S >. )  =  ( ( 2nd  |`  ( <. X ,  Y >. ( Hom  `  ( C  X.c  D
) ) <. Z ,  W >. ) ) `  <. R ,  S >. ) )
91 fvres 6207 . . . . . . . 8  |-  ( <. R ,  S >.  e.  ( <. X ,  Y >. ( Hom  `  ( C  X.c  D ) ) <. Z ,  W >. )  ->  ( ( 2nd  |`  ( <. X ,  Y >. ( Hom  `  ( C  X.c  D ) ) <. Z ,  W >. ) ) `  <. R ,  S >. )  =  ( 2nd `  <. R ,  S >. ) )
9244, 91syl 17 . . . . . . 7  |-  ( ph  ->  ( ( 2nd  |`  ( <. X ,  Y >. ( Hom  `  ( C  X.c  D ) ) <. Z ,  W >. ) ) `  <. R ,  S >. )  =  ( 2nd `  <. R ,  S >. ) )
93 op2ndg 7181 . . . . . . . 8  |-  ( ( R  e.  ( X H Z )  /\  S  e.  ( Y J W ) )  -> 
( 2nd `  <. R ,  S >. )  =  S )
9437, 38, 93syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( 2nd `  <. R ,  S >. )  =  S )
9590, 92, 943eqtrd 2660 . . . . . 6  |-  ( ph  ->  ( ( <. X ,  Y >. ( 2nd `  ( C  2ndF  D ) ) <. Z ,  W >. ) `
 <. R ,  S >. )  =  S )
9688, 95opeq12d 4410 . . . . 5  |-  ( ph  -> 
<. ( ( <. X ,  Y >. ( 2nd `  ( G  o.func  ( C  1stF  D )
) ) <. Z ,  W >. ) `  <. R ,  S >. ) ,  ( ( <. X ,  Y >. ( 2nd `  ( C  2ndF  D ) ) <. Z ,  W >. ) `
 <. R ,  S >. ) >.  =  <. ( ( X ( 2nd `  G ) Z ) `
 R ) ,  S >. )
9777, 96eqtrd 2656 . . . 4  |-  ( ph  ->  ( ( <. X ,  Y >. ( 2nd `  (
( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
) ) <. Z ,  W >. ) `  <. R ,  S >. )  =  <. ( ( X ( 2nd `  G
) Z ) `  R ) ,  S >. )
9876, 97fveq12d 6197 . . 3  |-  ( ph  ->  ( ( ( ( 1st `  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) `
 <. X ,  Y >. ) ( 2nd `  ( D evalF  E ) ) ( ( 1st `  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) `
 <. Z ,  W >. ) ) `  (
( <. X ,  Y >. ( 2nd `  (
( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
) ) <. Z ,  W >. ) `  <. R ,  S >. )
)  =  ( (
<. ( ( 1st `  G
) `  X ) ,  Y >. ( 2nd `  ( D evalF  E ) ) <. (
( 1st `  G
) `  Z ) ,  W >. ) `  <. ( ( X ( 2nd `  G ) Z ) `
 R ) ,  S >. ) )
99 df-ov 6653 . . 3  |-  ( ( ( X ( 2nd `  G ) Z ) `
 R ) (
<. ( ( 1st `  G
) `  X ) ,  Y >. ( 2nd `  ( D evalF  E ) ) <. (
( 1st `  G
) `  Z ) ,  W >. ) S )  =  ( ( <.
( ( 1st `  G
) `  X ) ,  Y >. ( 2nd `  ( D evalF  E ) ) <. (
( 1st `  G
) `  Z ) ,  W >. ) `  <. ( ( X ( 2nd `  G ) Z ) `
 R ) ,  S >. )
10098, 99syl6eqr 2674 . 2  |-  ( ph  ->  ( ( ( ( 1st `  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) `
 <. X ,  Y >. ) ( 2nd `  ( D evalF  E ) ) ( ( 1st `  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) `
 <. Z ,  W >. ) ) `  (
( <. X ,  Y >. ( 2nd `  (
( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
) ) <. Z ,  W >. ) `  <. R ,  S >. )
)  =  ( ( ( X ( 2nd `  G ) Z ) `
 R ) (
<. ( ( 1st `  G
) `  X ) ,  Y >. ( 2nd `  ( D evalF  E ) ) <. (
( 1st `  G
) `  Z ) ,  W >. ) S ) )
101 eqid 2622 . . 3  |-  (comp `  E )  =  (comp `  E )
102 eqid 2622 . . 3  |-  ( D Nat 
E )  =  ( D Nat  E )
10326fucbas 16620 . . . . 5  |-  ( D 
Func  E )  =  (
Base `  ( D FuncCat  E ) )
104 relfunc 16522 . . . . . 6  |-  Rel  ( C  Func  ( D FuncCat  E
) )
105 1st2ndbr 7217 . . . . . 6  |-  ( ( Rel  ( C  Func  ( D FuncCat  E ) )  /\  G  e.  ( C  Func  ( D FuncCat  E )
) )  ->  ( 1st `  G ) ( C  Func  ( D FuncCat  E ) ) ( 2nd `  G ) )
106104, 4, 105sylancr 695 . . . . 5  |-  ( ph  ->  ( 1st `  G
) ( C  Func  ( D FuncCat  E ) ) ( 2nd `  G ) )
10711, 103, 106funcf1 16526 . . . 4  |-  ( ph  ->  ( 1st `  G
) : A --> ( D 
Func  E ) )
108107, 28ffvelrnd 6360 . . 3  |-  ( ph  ->  ( ( 1st `  G
) `  X )  e.  ( D  Func  E
) )
109107, 32ffvelrnd 6360 . . 3  |-  ( ph  ->  ( ( 1st `  G
) `  Z )  e.  ( D  Func  E
) )
110 eqid 2622 . . 3  |-  ( <.
( ( 1st `  G
) `  X ) ,  Y >. ( 2nd `  ( D evalF  E ) ) <. (
( 1st `  G
) `  Z ) ,  W >. )  =  (
<. ( ( 1st `  G
) `  X ) ,  Y >. ( 2nd `  ( D evalF  E ) ) <. (
( 1st `  G
) `  Z ) ,  W >. )
11126, 102fuchom 16621 . . . . 5  |-  ( D Nat 
E )  =  ( Hom  `  ( D FuncCat  E ) )
11211, 41, 111, 106, 28, 32funcf2 16528 . . . 4  |-  ( ph  ->  ( X ( 2nd `  G ) Z ) : ( X H Z ) --> ( ( ( 1st `  G
) `  X )
( D Nat  E ) ( ( 1st `  G
) `  Z )
) )
113112, 37ffvelrnd 6360 . . 3  |-  ( ph  ->  ( ( X ( 2nd `  G ) Z ) `  R
)  e.  ( ( ( 1st `  G
) `  X )
( D Nat  E ) ( ( 1st `  G
) `  Z )
) )
11425, 2, 3, 12, 42, 101, 102, 108, 109, 29, 33, 110, 113, 38evlf2val 16859 . 2  |-  ( ph  ->  ( ( ( X ( 2nd `  G
) Z ) `  R ) ( <.
( ( 1st `  G
) `  X ) ,  Y >. ( 2nd `  ( D evalF  E ) ) <. (
( 1st `  G
) `  Z ) ,  W >. ) S )  =  ( ( ( ( X ( 2nd `  G ) Z ) `
 R ) `  W ) ( <.
( ( 1st `  (
( 1st `  G
) `  X )
) `  Y ) ,  ( ( 1st `  ( ( 1st `  G
) `  X )
) `  W ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  Z )
) `  W )
) ( ( Y ( 2nd `  (
( 1st `  G
) `  X )
) W ) `  S ) ) )
11547, 100, 1143eqtrd 2660 1  |-  ( ph  ->  ( R ( <. X ,  Y >. ( 2nd `  F )
<. Z ,  W >. ) S )  =  ( ( ( ( X ( 2nd `  G
) Z ) `  R ) `  W
) ( <. (
( 1st `  (
( 1st `  G
) `  X )
) `  Y ) ,  ( ( 1st `  ( ( 1st `  G
) `  X )
) `  W ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  Z )
) `  W )
) ( ( Y ( 2nd `  (
( 1st `  G
) `  X )
) W ) `  S ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   <.cop 4183   class class class wbr 4653    X. cxp 5112    |` cres 5116   Rel wrel 5119   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   <"cs3 13587   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325    Func cfunc 16514    o.func ccofu 16516   Nat cnat 16601   FuncCat cfuc 16602    X.c cxpc 16808    1stF c1stf 16809    2ndF c2ndf 16810   ⟨,⟩F cprf 16811   evalF cevlf 16849   uncurryF cuncf 16851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-func 16518  df-cofu 16520  df-nat 16603  df-fuc 16604  df-xpc 16812  df-1stf 16813  df-2ndf 16814  df-prf 16815  df-evlf 16853  df-uncf 16855
This theorem is referenced by:  curfuncf  16878  uncfcurf  16879
  Copyright terms: Public domain W3C validator