MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfseq Structured version   Visualization version   Unicode version

Theorem pwfseq 9486
Description: The powerset of a Dedekind-infinite set does not inject into the set of finite sequences. The proof is due to Halbeisen and Shelah. Proposition 1.7 of [KanamoriPincus] p. 418. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
pwfseq  |-  ( om  ~<_  A  ->  -.  ~P A  ~<_  U_ n  e.  om  ( A  ^m  n ) )
Distinct variable group:    A, n

Proof of Theorem pwfseq
Dummy variables  f 
b  g  h  k  m  p  r  s  t  u  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 7961 . . 3  |-  Rel  ~<_
21brrelex2i 5159 . 2  |-  ( om  ~<_  A  ->  A  e.  _V )
3 domeng 7969 . . 3  |-  ( A  e.  _V  ->  ( om 
~<_  A  <->  E. t ( om 
~~  t  /\  t  C_  A ) ) )
4 bren 7964 . . . . . 6  |-  ( om 
~~  t  <->  E. h  h : om -1-1-onto-> t )
5 harcl 8466 . . . . . . . . . 10  |-  (har `  ~P A )  e.  On
6 infxpenc2 8845 . . . . . . . . . 10  |-  ( (har
`  ~P A )  e.  On  ->  E. m A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( m `  b ) : ( b  X.  b ) -1-1-onto-> b ) )
75, 6ax-mp 5 . . . . . . . . 9  |-  E. m A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( m `  b ) : ( b  X.  b ) -1-1-onto-> b )
8 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( h : om -1-1-onto-> t  /\  t  C_  A )  /\  A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( m `
 b ) : ( b  X.  b
)
-1-1-onto-> b ) )  /\  g : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )  ->  g : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n
) )
9 oveq2 6658 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  k  ->  ( A  ^m  n )  =  ( A  ^m  k
) )
109cbviunv 4559 . . . . . . . . . . . . . . . . 17  |-  U_ n  e.  om  ( A  ^m  n )  =  U_ k  e.  om  ( A  ^m  k )
11 f1eq3 6098 . . . . . . . . . . . . . . . . 17  |-  ( U_ n  e.  om  ( A  ^m  n )  = 
U_ k  e.  om  ( A  ^m  k
)  ->  ( g : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n )  <->  g : ~P A -1-1-> U_ k  e.  om  ( A  ^m  k
) ) )
1210, 11ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( g : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n )  <->  g : ~P A -1-1-> U_ k  e.  om  ( A  ^m  k
) )
138, 12sylib 208 . . . . . . . . . . . . . . 15  |-  ( ( ( ( h : om -1-1-onto-> t  /\  t  C_  A )  /\  A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( m `
 b ) : ( b  X.  b
)
-1-1-onto-> b ) )  /\  g : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )  ->  g : ~P A -1-1-> U_ k  e.  om  ( A  ^m  k
) )
14 simpllr 799 . . . . . . . . . . . . . . 15  |-  ( ( ( ( h : om -1-1-onto-> t  /\  t  C_  A )  /\  A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( m `
 b ) : ( b  X.  b
)
-1-1-onto-> b ) )  /\  g : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )  ->  t  C_  A
)
15 simplll 798 . . . . . . . . . . . . . . 15  |-  ( ( ( ( h : om -1-1-onto-> t  /\  t  C_  A )  /\  A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( m `
 b ) : ( b  X.  b
)
-1-1-onto-> b ) )  /\  g : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )  ->  h : om -1-1-onto-> t
)
16 biid 251 . . . . . . . . . . . . . . 15  |-  ( ( ( u  C_  A  /\  r  C_  ( u  X.  u )  /\  r  We  u )  /\  om  ~<_  u )  <->  ( (
u  C_  A  /\  r  C_  ( u  X.  u )  /\  r  We  u )  /\  om  ~<_  u ) )
17 simplr 792 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( h : om -1-1-onto-> t  /\  t  C_  A )  /\  A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( m `
 b ) : ( b  X.  b
)
-1-1-onto-> b ) )  /\  g : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )  ->  A. b  e.  (har
`  ~P A ) ( om  C_  b  ->  ( m `  b
) : ( b  X.  b ) -1-1-onto-> b ) )
18 sseq2 3627 . . . . . . . . . . . . . . . . . 18  |-  ( b  =  w  ->  ( om  C_  b  <->  om  C_  w
) )
19 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20  |-  ( b  =  w  ->  (
m `  b )  =  ( m `  w ) )
20 f1oeq1 6127 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( m `  b )  =  ( m `  w )  ->  (
( m `  b
) : ( b  X.  b ) -1-1-onto-> b  <->  ( m `  w ) : ( b  X.  b ) -1-1-onto-> b ) )
2119, 20syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( b  =  w  ->  (
( m `  b
) : ( b  X.  b ) -1-1-onto-> b  <->  ( m `  w ) : ( b  X.  b ) -1-1-onto-> b ) )
22 xpeq12 5134 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( b  =  w  /\  b  =  w )  ->  ( b  X.  b
)  =  ( w  X.  w ) )
2322anidms 677 . . . . . . . . . . . . . . . . . . . 20  |-  ( b  =  w  ->  (
b  X.  b )  =  ( w  X.  w ) )
24 f1oeq2 6128 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( b  X.  b )  =  ( w  X.  w )  ->  (
( m `  w
) : ( b  X.  b ) -1-1-onto-> b  <->  ( m `  w ) : ( w  X.  w ) -1-1-onto-> b ) )
2523, 24syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( b  =  w  ->  (
( m `  w
) : ( b  X.  b ) -1-1-onto-> b  <->  ( m `  w ) : ( w  X.  w ) -1-1-onto-> b ) )
26 f1oeq3 6129 . . . . . . . . . . . . . . . . . . 19  |-  ( b  =  w  ->  (
( m `  w
) : ( w  X.  w ) -1-1-onto-> b  <->  ( m `  w ) : ( w  X.  w ) -1-1-onto-> w ) )
2721, 25, 263bitrd 294 . . . . . . . . . . . . . . . . . 18  |-  ( b  =  w  ->  (
( m `  b
) : ( b  X.  b ) -1-1-onto-> b  <->  ( m `  w ) : ( w  X.  w ) -1-1-onto-> w ) )
2818, 27imbi12d 334 . . . . . . . . . . . . . . . . 17  |-  ( b  =  w  ->  (
( om  C_  b  ->  ( m `  b
) : ( b  X.  b ) -1-1-onto-> b )  <-> 
( om  C_  w  ->  ( m `  w
) : ( w  X.  w ) -1-1-onto-> w ) ) )
2928cbvralv 3171 . . . . . . . . . . . . . . . 16  |-  ( A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( m `
 b ) : ( b  X.  b
)
-1-1-onto-> b )  <->  A. w  e.  (har `  ~P A ) ( om  C_  w  ->  ( m `  w
) : ( w  X.  w ) -1-1-onto-> w ) )
3017, 29sylib 208 . . . . . . . . . . . . . . 15  |-  ( ( ( ( h : om -1-1-onto-> t  /\  t  C_  A )  /\  A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( m `
 b ) : ( b  X.  b
)
-1-1-onto-> b ) )  /\  g : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )  ->  A. w  e.  (har
`  ~P A ) ( om  C_  w  ->  ( m `  w
) : ( w  X.  w ) -1-1-onto-> w ) )
31 eqid 2622 . . . . . . . . . . . . . . 15  |- OrdIso ( r ,  u )  = OrdIso
( r ,  u
)
32 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( s  e.  dom OrdIso ( r ,  u ) ,  z  e.  dom OrdIso ( r ,  u )  |->  <. (OrdIso ( r ,  u
) `  s ) ,  (OrdIso ( r ,  u ) `  z
) >. )  =  ( s  e.  dom OrdIso ( r ,  u ) ,  z  e.  dom OrdIso ( r ,  u )  |->  <.
(OrdIso ( r ,  u ) `  s
) ,  (OrdIso (
r ,  u ) `
 z ) >.
)
33 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( (OrdIso ( r ,  u
)  o.  ( m `
 dom OrdIso ( r ,  u ) ) )  o.  `' ( s  e.  dom OrdIso ( r ,  u ) ,  z  e.  dom OrdIso ( r ,  u )  |->  <. (OrdIso ( r ,  u
) `  s ) ,  (OrdIso ( r ,  u ) `  z
) >. ) )  =  ( (OrdIso ( r ,  u )  o.  ( m `  dom OrdIso ( r ,  u ) ) )  o.  `' ( s  e.  dom OrdIso ( r ,  u ) ,  z  e.  dom OrdIso ( r ,  u ) 
|->  <. (OrdIso ( r ,  u ) `  s ) ,  (OrdIso ( r ,  u
) `  z ) >. ) )
34 eqid 2622 . . . . . . . . . . . . . . 15  |- seq𝜔 ( ( p  e. 
_V ,  f  e. 
_V  |->  ( x  e.  ( u  ^m  suc  p )  |->  ( ( f `  ( x  |`  p ) ) ( (OrdIso ( r ,  u )  o.  (
m `  dom OrdIso ( r ,  u ) ) )  o.  `' ( s  e.  dom OrdIso ( r ,  u ) ,  z  e.  dom OrdIso ( r ,  u )  |->  <.
(OrdIso ( r ,  u ) `  s
) ,  (OrdIso (
r ,  u ) `
 z ) >.
) ) ( x `
 p ) ) ) ) ,  { <.
(/) ,  (OrdIso (
r ,  u ) `
 (/) ) >. } )  = seq𝜔 ( ( p  e. 
_V ,  f  e. 
_V  |->  ( x  e.  ( u  ^m  suc  p )  |->  ( ( f `  ( x  |`  p ) ) ( (OrdIso ( r ,  u )  o.  (
m `  dom OrdIso ( r ,  u ) ) )  o.  `' ( s  e.  dom OrdIso ( r ,  u ) ,  z  e.  dom OrdIso ( r ,  u )  |->  <.
(OrdIso ( r ,  u ) `  s
) ,  (OrdIso (
r ,  u ) `
 z ) >.
) ) ( x `
 p ) ) ) ) ,  { <.
(/) ,  (OrdIso (
r ,  u ) `
 (/) ) >. } )
35 oveq2 6658 . . . . . . . . . . . . . . . . 17  |-  ( n  =  k  ->  (
u  ^m  n )  =  ( u  ^m  k ) )
3635cbviunv 4559 . . . . . . . . . . . . . . . 16  |-  U_ n  e.  om  ( u  ^m  n )  =  U_ k  e.  om  (
u  ^m  k )
37 mpteq1 4737 . . . . . . . . . . . . . . . 16  |-  ( U_ n  e.  om  (
u  ^m  n )  =  U_ k  e.  om  ( u  ^m  k
)  ->  ( y  e.  U_ n  e.  om  ( u  ^m  n
)  |->  <. dom  y , 
( (seq𝜔 ( ( p  e. 
_V ,  f  e. 
_V  |->  ( x  e.  ( u  ^m  suc  p )  |->  ( ( f `  ( x  |`  p ) ) ( (OrdIso ( r ,  u )  o.  (
m `  dom OrdIso ( r ,  u ) ) )  o.  `' ( s  e.  dom OrdIso ( r ,  u ) ,  z  e.  dom OrdIso ( r ,  u )  |->  <.
(OrdIso ( r ,  u ) `  s
) ,  (OrdIso (
r ,  u ) `
 z ) >.
) ) ( x `
 p ) ) ) ) ,  { <.
(/) ,  (OrdIso (
r ,  u ) `
 (/) ) >. } ) `
 dom  y ) `  y ) >. )  =  ( y  e. 
U_ k  e.  om  ( u  ^m  k
)  |->  <. dom  y , 
( (seq𝜔 ( ( p  e. 
_V ,  f  e. 
_V  |->  ( x  e.  ( u  ^m  suc  p )  |->  ( ( f `  ( x  |`  p ) ) ( (OrdIso ( r ,  u )  o.  (
m `  dom OrdIso ( r ,  u ) ) )  o.  `' ( s  e.  dom OrdIso ( r ,  u ) ,  z  e.  dom OrdIso ( r ,  u )  |->  <.
(OrdIso ( r ,  u ) `  s
) ,  (OrdIso (
r ,  u ) `
 z ) >.
) ) ( x `
 p ) ) ) ) ,  { <.
(/) ,  (OrdIso (
r ,  u ) `
 (/) ) >. } ) `
 dom  y ) `  y ) >. )
)
3836, 37ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( y  e.  U_ n  e. 
om  ( u  ^m  n )  |->  <. dom  y ,  ( (seq𝜔 ( ( p  e.  _V , 
f  e.  _V  |->  ( x  e.  ( u  ^m  suc  p ) 
|->  ( ( f `  ( x  |`  p ) ) ( (OrdIso (
r ,  u )  o.  ( m `  dom OrdIso ( r ,  u
) ) )  o.  `' ( s  e. 
dom OrdIso ( r ,  u
) ,  z  e. 
dom OrdIso ( r ,  u
)  |->  <. (OrdIso ( r ,  u ) `  s ) ,  (OrdIso ( r ,  u
) `  z ) >. ) ) ( x `
 p ) ) ) ) ,  { <.
(/) ,  (OrdIso (
r ,  u ) `
 (/) ) >. } ) `
 dom  y ) `  y ) >. )  =  ( y  e. 
U_ k  e.  om  ( u  ^m  k
)  |->  <. dom  y , 
( (seq𝜔 ( ( p  e. 
_V ,  f  e. 
_V  |->  ( x  e.  ( u  ^m  suc  p )  |->  ( ( f `  ( x  |`  p ) ) ( (OrdIso ( r ,  u )  o.  (
m `  dom OrdIso ( r ,  u ) ) )  o.  `' ( s  e.  dom OrdIso ( r ,  u ) ,  z  e.  dom OrdIso ( r ,  u )  |->  <.
(OrdIso ( r ,  u ) `  s
) ,  (OrdIso (
r ,  u ) `
 z ) >.
) ) ( x `
 p ) ) ) ) ,  { <.
(/) ,  (OrdIso (
r ,  u ) `
 (/) ) >. } ) `
 dom  y ) `  y ) >. )
39 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( x  e.  om ,  y  e.  u  |->  <. (OrdIso ( r ,  u
) `  x ) ,  y >. )  =  ( x  e. 
om ,  y  e.  u  |->  <. (OrdIso ( r ,  u ) `  x ) ,  y
>. )
40 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( ( ( (OrdIso ( r ,  u )  o.  ( m `  dom OrdIso ( r ,  u ) ) )  o.  `' ( s  e.  dom OrdIso ( r ,  u ) ,  z  e.  dom OrdIso ( r ,  u ) 
|->  <. (OrdIso ( r ,  u ) `  s ) ,  (OrdIso ( r ,  u
) `  z ) >. ) )  o.  (
x  e.  om , 
y  e.  u  |->  <.
(OrdIso ( r ,  u ) `  x
) ,  y >.
) )  o.  (
y  e.  U_ n  e.  om  ( u  ^m  n )  |->  <. dom  y ,  ( (seq𝜔 ( ( p  e.  _V , 
f  e.  _V  |->  ( x  e.  ( u  ^m  suc  p ) 
|->  ( ( f `  ( x  |`  p ) ) ( (OrdIso (
r ,  u )  o.  ( m `  dom OrdIso ( r ,  u
) ) )  o.  `' ( s  e. 
dom OrdIso ( r ,  u
) ,  z  e. 
dom OrdIso ( r ,  u
)  |->  <. (OrdIso ( r ,  u ) `  s ) ,  (OrdIso ( r ,  u
) `  z ) >. ) ) ( x `
 p ) ) ) ) ,  { <.
(/) ,  (OrdIso (
r ,  u ) `
 (/) ) >. } ) `
 dom  y ) `  y ) >. )
)  =  ( ( ( (OrdIso ( r ,  u )  o.  ( m `  dom OrdIso ( r ,  u ) ) )  o.  `' ( s  e.  dom OrdIso ( r ,  u ) ,  z  e.  dom OrdIso ( r ,  u ) 
|->  <. (OrdIso ( r ,  u ) `  s ) ,  (OrdIso ( r ,  u
) `  z ) >. ) )  o.  (
x  e.  om , 
y  e.  u  |->  <.
(OrdIso ( r ,  u ) `  x
) ,  y >.
) )  o.  (
y  e.  U_ n  e.  om  ( u  ^m  n )  |->  <. dom  y ,  ( (seq𝜔 ( ( p  e.  _V , 
f  e.  _V  |->  ( x  e.  ( u  ^m  suc  p ) 
|->  ( ( f `  ( x  |`  p ) ) ( (OrdIso (
r ,  u )  o.  ( m `  dom OrdIso ( r ,  u
) ) )  o.  `' ( s  e. 
dom OrdIso ( r ,  u
) ,  z  e. 
dom OrdIso ( r ,  u
)  |->  <. (OrdIso ( r ,  u ) `  s ) ,  (OrdIso ( r ,  u
) `  z ) >. ) ) ( x `
 p ) ) ) ) ,  { <.
(/) ,  (OrdIso (
r ,  u ) `
 (/) ) >. } ) `
 dom  y ) `  y ) >. )
)
4113, 14, 15, 16, 30, 31, 32, 33, 34, 38, 39, 40pwfseqlem5 9485 . . . . . . . . . . . . . 14  |-  -.  (
( ( h : om -1-1-onto-> t  /\  t  C_  A )  /\  A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( m `
 b ) : ( b  X.  b
)
-1-1-onto-> b ) )  /\  g : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )
4241imnani 439 . . . . . . . . . . . . 13  |-  ( ( ( h : om -1-1-onto-> t  /\  t  C_  A )  /\  A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( m `  b
) : ( b  X.  b ) -1-1-onto-> b ) )  ->  -.  g : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )
4342nexdv 1864 . . . . . . . . . . . 12  |-  ( ( ( h : om -1-1-onto-> t  /\  t  C_  A )  /\  A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( m `  b
) : ( b  X.  b ) -1-1-onto-> b ) )  ->  -.  E. g 
g : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )
44 brdomi 7966 . . . . . . . . . . . 12  |-  ( ~P A  ~<_  U_ n  e.  om  ( A  ^m  n
)  ->  E. g 
g : ~P A -1-1-> U_ n  e.  om  ( A  ^m  n ) )
4543, 44nsyl 135 . . . . . . . . . . 11  |-  ( ( ( h : om -1-1-onto-> t  /\  t  C_  A )  /\  A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( m `  b
) : ( b  X.  b ) -1-1-onto-> b ) )  ->  -.  ~P A  ~<_  U_ n  e.  om  ( A  ^m  n ) )
4645ex 450 . . . . . . . . . 10  |-  ( ( h : om -1-1-onto-> t  /\  t  C_  A )  ->  ( A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( m `  b ) : ( b  X.  b ) -1-1-onto-> b )  ->  -.  ~P A  ~<_  U_ n  e. 
om  ( A  ^m  n ) ) )
4746exlimdv 1861 . . . . . . . . 9  |-  ( ( h : om -1-1-onto-> t  /\  t  C_  A )  ->  ( E. m A. b  e.  (har `  ~P A ) ( om  C_  b  ->  ( m `  b
) : ( b  X.  b ) -1-1-onto-> b )  ->  -.  ~P A  ~<_  U_ n  e.  om  ( A  ^m  n ) ) )
487, 47mpi 20 . . . . . . . 8  |-  ( ( h : om -1-1-onto-> t  /\  t  C_  A )  ->  -.  ~P A  ~<_  U_ n  e. 
om  ( A  ^m  n ) )
4948ex 450 . . . . . . 7  |-  ( h : om -1-1-onto-> t  ->  ( t 
C_  A  ->  -.  ~P A  ~<_  U_ n  e. 
om  ( A  ^m  n ) ) )
5049exlimiv 1858 . . . . . 6  |-  ( E. h  h : om -1-1-onto-> t  ->  ( t  C_  A  ->  -.  ~P A  ~<_  U_ n  e.  om  ( A  ^m  n ) ) )
514, 50sylbi 207 . . . . 5  |-  ( om 
~~  t  ->  (
t  C_  A  ->  -. 
~P A  ~<_  U_ n  e.  om  ( A  ^m  n ) ) )
5251imp 445 . . . 4  |-  ( ( om  ~~  t  /\  t  C_  A )  ->  -.  ~P A  ~<_  U_ n  e.  om  ( A  ^m  n ) )
5352exlimiv 1858 . . 3  |-  ( E. t ( om  ~~  t  /\  t  C_  A
)  ->  -.  ~P A  ~<_  U_ n  e.  om  ( A  ^m  n ) )
543, 53syl6bi 243 . 2  |-  ( A  e.  _V  ->  ( om 
~<_  A  ->  -.  ~P A  ~<_  U_ n  e.  om  ( A  ^m  n ) ) )
552, 54mpcom 38 1  |-  ( om  ~<_  A  ->  -.  ~P A  ~<_  U_ n  e.  om  ( A  ^m  n ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   <.cop 4183   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729    We wwe 5072    X. cxp 5112   `'ccnv 5113   dom cdm 5114    |` cres 5116    o. ccom 5118   Oncon0 5723   suc csuc 5725   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   omcom 7065  seq𝜔cseqom 7542    ^m cmap 7857    ~~ cen 7952    ~<_ cdom 7953  OrdIsocoi 8414  harchar 8461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-har 8463  df-cnf 8559  df-card 8765
This theorem is referenced by:  pwxpndom2  9487
  Copyright terms: Public domain W3C validator