| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prsiga | Structured version Visualization version Unicode version | ||
| Description: The smallest possible
sigma-algebra containing |
| Ref | Expression |
|---|---|
| prsiga |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elpw 4834 |
. . 3
| |
| 2 | pwidg 4173 |
. . 3
| |
| 3 | prssi 4353 |
. . 3
| |
| 4 | 1, 2, 3 | sylancr 695 |
. 2
|
| 5 | prid2g 4296 |
. . 3
| |
| 6 | dif0 3950 |
. . . . 5
| |
| 7 | 6, 5 | syl5eqel 2705 |
. . . 4
|
| 8 | difid 3948 |
. . . . 5
| |
| 9 | 0ex 4790 |
. . . . . . 7
| |
| 10 | 9 | prid1 4297 |
. . . . . 6
|
| 11 | 10 | a1i 11 |
. . . . 5
|
| 12 | 8, 11 | syl5eqel 2705 |
. . . 4
|
| 13 | difeq2 3722 |
. . . . . . 7
| |
| 14 | 13 | eleq1d 2686 |
. . . . . 6
|
| 15 | difeq2 3722 |
. . . . . . 7
| |
| 16 | 15 | eleq1d 2686 |
. . . . . 6
|
| 17 | 14, 16 | ralprg 4234 |
. . . . 5
|
| 18 | 9, 17 | mpan 706 |
. . . 4
|
| 19 | 7, 12, 18 | mpbir2and 957 |
. . 3
|
| 20 | uni0 4465 |
. . . . . . . . 9
| |
| 21 | 20, 10 | eqeltri 2697 |
. . . . . . . 8
|
| 22 | 9 | unisn 4451 |
. . . . . . . . 9
|
| 23 | 22, 10 | eqeltri 2697 |
. . . . . . . 8
|
| 24 | 21, 23 | pm3.2i 471 |
. . . . . . 7
|
| 25 | snex 4908 |
. . . . . . . . 9
| |
| 26 | 9, 25 | pm3.2i 471 |
. . . . . . . 8
|
| 27 | unieq 4444 |
. . . . . . . . . 10
| |
| 28 | 27 | eleq1d 2686 |
. . . . . . . . 9
|
| 29 | unieq 4444 |
. . . . . . . . . 10
| |
| 30 | 29 | eleq1d 2686 |
. . . . . . . . 9
|
| 31 | 28, 30 | ralprg 4234 |
. . . . . . . 8
|
| 32 | 26, 31 | mp1i 13 |
. . . . . . 7
|
| 33 | 24, 32 | mpbiri 248 |
. . . . . 6
|
| 34 | unisng 4452 |
. . . . . . . 8
| |
| 35 | 34, 5 | eqeltrd 2701 |
. . . . . . 7
|
| 36 | uniprg 4450 |
. . . . . . . . . 10
| |
| 37 | 9, 36 | mpan 706 |
. . . . . . . . 9
|
| 38 | uncom 3757 |
. . . . . . . . . 10
| |
| 39 | un0 3967 |
. . . . . . . . . 10
| |
| 40 | 38, 39 | eqtri 2644 |
. . . . . . . . 9
|
| 41 | 37, 40 | syl6eq 2672 |
. . . . . . . 8
|
| 42 | 41, 5 | eqeltrd 2701 |
. . . . . . 7
|
| 43 | snex 4908 |
. . . . . . . . 9
| |
| 44 | prex 4909 |
. . . . . . . . 9
| |
| 45 | 43, 44 | pm3.2i 471 |
. . . . . . . 8
|
| 46 | unieq 4444 |
. . . . . . . . . 10
| |
| 47 | 46 | eleq1d 2686 |
. . . . . . . . 9
|
| 48 | unieq 4444 |
. . . . . . . . . 10
| |
| 49 | 48 | eleq1d 2686 |
. . . . . . . . 9
|
| 50 | 47, 49 | ralprg 4234 |
. . . . . . . 8
|
| 51 | 45, 50 | mp1i 13 |
. . . . . . 7
|
| 52 | 35, 42, 51 | mpbir2and 957 |
. . . . . 6
|
| 53 | ralun 3795 |
. . . . . 6
| |
| 54 | 33, 52, 53 | syl2anc 693 |
. . . . 5
|
| 55 | pwpr 4430 |
. . . . . 6
| |
| 56 | 55 | raleqi 3142 |
. . . . 5
|
| 57 | 54, 56 | sylibr 224 |
. . . 4
|
| 58 | ax-1 6 |
. . . . 5
| |
| 59 | 58 | ralimi 2952 |
. . . 4
|
| 60 | 57, 59 | syl 17 |
. . 3
|
| 61 | 5, 19, 60 | 3jca 1242 |
. 2
|
| 62 | issiga 30174 |
. . 3
| |
| 63 | 44, 62 | ax-mp 5 |
. 2
|
| 64 | 4, 61, 63 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-siga 30171 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |