MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pr2pwpr Structured version   Visualization version   Unicode version

Theorem pr2pwpr 13261
Description: The set of subsets of a pair having length 2 is the set of the pair as singleton. (Contributed by AV, 9-Dec-2018.)
Assertion
Ref Expression
pr2pwpr  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  ->  { p  e.  ~P { A ,  B }  |  p  ~~  2o }  =  { { A ,  B } } )
Distinct variable groups:    A, p    B, p
Allowed substitution hints:    V( p)    W( p)

Proof of Theorem pr2pwpr
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 elpwi 4168 . . . . . . 7  |-  ( s  e.  ~P { A ,  B }  ->  s  C_ 
{ A ,  B } )
2 prfi 8235 . . . . . . . . 9  |-  { A ,  B }  e.  Fin
3 ssfi 8180 . . . . . . . . 9  |-  ( ( { A ,  B }  e.  Fin  /\  s  C_ 
{ A ,  B } )  ->  s  e.  Fin )
42, 3mpan 706 . . . . . . . 8  |-  ( s 
C_  { A ,  B }  ->  s  e. 
Fin )
5 hash2 13193 . . . . . . . . . . . . . 14  |-  ( # `  2o )  =  2
65eqcomi 2631 . . . . . . . . . . . . 13  |-  2  =  ( # `  2o )
76a1i 11 . . . . . . . . . . . 12  |-  ( s  e.  Fin  ->  2  =  ( # `  2o ) )
87eqeq2d 2632 . . . . . . . . . . 11  |-  ( s  e.  Fin  ->  (
( # `  s )  =  2  <->  ( # `  s
)  =  ( # `  2o ) ) )
9 2onn 7720 . . . . . . . . . . . . 13  |-  2o  e.  om
10 nnfi 8153 . . . . . . . . . . . . 13  |-  ( 2o  e.  om  ->  2o  e.  Fin )
119, 10ax-mp 5 . . . . . . . . . . . 12  |-  2o  e.  Fin
12 hashen 13135 . . . . . . . . . . . 12  |-  ( ( s  e.  Fin  /\  2o  e.  Fin )  -> 
( ( # `  s
)  =  ( # `  2o )  <->  s  ~~  2o ) )
1311, 12mpan2 707 . . . . . . . . . . 11  |-  ( s  e.  Fin  ->  (
( # `  s )  =  ( # `  2o ) 
<->  s  ~~  2o ) )
148, 13bitrd 268 . . . . . . . . . 10  |-  ( s  e.  Fin  ->  (
( # `  s )  =  2  <->  s  ~~  2o ) )
15 hash2pwpr 13258 . . . . . . . . . . . 12  |-  ( ( ( # `  s
)  =  2  /\  s  e.  ~P { A ,  B }
)  ->  s  =  { A ,  B }
)
1615a1d 25 . . . . . . . . . . 11  |-  ( ( ( # `  s
)  =  2  /\  s  e.  ~P { A ,  B }
)  ->  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  -> 
s  =  { A ,  B } ) )
1716ex 450 . . . . . . . . . 10  |-  ( (
# `  s )  =  2  ->  (
s  e.  ~P { A ,  B }  ->  ( ( A  e.  V  /\  B  e.  W  /\  A  =/= 
B )  ->  s  =  { A ,  B } ) ) )
1814, 17syl6bir 244 . . . . . . . . 9  |-  ( s  e.  Fin  ->  (
s  ~~  2o  ->  ( s  e.  ~P { A ,  B }  ->  ( ( A  e.  V  /\  B  e.  W  /\  A  =/= 
B )  ->  s  =  { A ,  B } ) ) ) )
1918com23 86 . . . . . . . 8  |-  ( s  e.  Fin  ->  (
s  e.  ~P { A ,  B }  ->  ( s  ~~  2o  ->  ( ( A  e.  V  /\  B  e.  W  /\  A  =/= 
B )  ->  s  =  { A ,  B } ) ) ) )
204, 19syl 17 . . . . . . 7  |-  ( s 
C_  { A ,  B }  ->  ( s  e.  ~P { A ,  B }  ->  (
s  ~~  2o  ->  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B
)  ->  s  =  { A ,  B }
) ) ) )
211, 20mpcom 38 . . . . . 6  |-  ( s  e.  ~P { A ,  B }  ->  (
s  ~~  2o  ->  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B
)  ->  s  =  { A ,  B }
) ) )
2221imp 445 . . . . 5  |-  ( ( s  e.  ~P { A ,  B }  /\  s  ~~  2o )  ->  ( ( A  e.  V  /\  B  e.  W  /\  A  =/= 
B )  ->  s  =  { A ,  B } ) )
2322com12 32 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  -> 
( ( s  e. 
~P { A ,  B }  /\  s  ~~  2o )  ->  s  =  { A ,  B } ) )
24 prex 4909 . . . . . . . . . . . . 13  |-  { A ,  B }  e.  _V
2524prid2 4298 . . . . . . . . . . . 12  |-  { A ,  B }  e.  { { B } ,  { A ,  B } }
2625a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  ->  { A ,  B }  e.  { { B } ,  { A ,  B } } )
2726olcd 408 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  -> 
( { A ,  B }  e.  { (/) ,  { A } }  \/  { A ,  B }  e.  { { B } ,  { A ,  B } } ) )
28 elun 3753 . . . . . . . . . 10  |-  ( { A ,  B }  e.  ( { (/) ,  { A } }  u.  { { B } ,  { A ,  B } } )  <->  ( { A ,  B }  e.  { (/) ,  { A } }  \/  { A ,  B }  e.  { { B } ,  { A ,  B } } ) )
2927, 28sylibr 224 . . . . . . . . 9  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  ->  { A ,  B }  e.  ( { (/) ,  { A } }  u.  { { B } ,  { A ,  B } } ) )
30 pwpr 4430 . . . . . . . . 9  |-  ~P { A ,  B }  =  ( { (/) ,  { A } }  u.  { { B } ,  { A ,  B } } )
3129, 30syl6eleqr 2712 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  ->  { A ,  B }  e.  ~P { A ,  B } )
3231adantr 481 . . . . . . 7  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B
)  /\  s  =  { A ,  B }
)  ->  { A ,  B }  e.  ~P { A ,  B }
)
33 eleq1 2689 . . . . . . . 8  |-  ( s  =  { A ,  B }  ->  ( s  e.  ~P { A ,  B }  <->  { A ,  B }  e.  ~P { A ,  B }
) )
3433adantl 482 . . . . . . 7  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B
)  /\  s  =  { A ,  B }
)  ->  ( s  e.  ~P { A ,  B }  <->  { A ,  B }  e.  ~P { A ,  B } ) )
3532, 34mpbird 247 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B
)  /\  s  =  { A ,  B }
)  ->  s  e.  ~P { A ,  B } )
36 pr2nelem 8827 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  ->  { A ,  B }  ~~  2o )
3736adantr 481 . . . . . . 7  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B
)  /\  s  =  { A ,  B }
)  ->  { A ,  B }  ~~  2o )
38 breq1 4656 . . . . . . . 8  |-  ( s  =  { A ,  B }  ->  ( s 
~~  2o  <->  { A ,  B }  ~~  2o ) )
3938adantl 482 . . . . . . 7  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B
)  /\  s  =  { A ,  B }
)  ->  ( s  ~~  2o  <->  { A ,  B }  ~~  2o ) )
4037, 39mpbird 247 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B
)  /\  s  =  { A ,  B }
)  ->  s  ~~  2o )
4135, 40jca 554 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B
)  /\  s  =  { A ,  B }
)  ->  ( s  e.  ~P { A ,  B }  /\  s  ~~  2o ) )
4241ex 450 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  -> 
( s  =  { A ,  B }  ->  ( s  e.  ~P { A ,  B }  /\  s  ~~  2o ) ) )
4323, 42impbid 202 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  -> 
( ( s  e. 
~P { A ,  B }  /\  s  ~~  2o )  <->  s  =  { A ,  B }
) )
44 breq1 4656 . . . 4  |-  ( p  =  s  ->  (
p  ~~  2o  <->  s  ~~  2o ) )
4544elrab 3363 . . 3  |-  ( s  e.  { p  e. 
~P { A ,  B }  |  p  ~~  2o }  <->  ( s  e.  ~P { A ,  B }  /\  s  ~~  2o ) )
46 velsn 4193 . . 3  |-  ( s  e.  { { A ,  B } }  <->  s  =  { A ,  B }
)
4743, 45, 463bitr4g 303 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  -> 
( s  e.  {
p  e.  ~P { A ,  B }  |  p  ~~  2o }  <->  s  e.  { { A ,  B } } ) )
4847eqrdv 2620 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  ->  { p  e.  ~P { A ,  B }  |  p  ~~  2o }  =  { { A ,  B } } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916    u. cun 3572    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   {cpr 4179   class class class wbr 4653   ` cfv 5888   omcom 7065   2oc2o 7554    ~~ cen 7952   Fincfn 7955   2c2 11070   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by:  pmtrprfval  17907
  Copyright terms: Public domain W3C validator