MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash2pwpr Structured version   Visualization version   Unicode version

Theorem hash2pwpr 13258
Description: If the size of a subset of an unordered pair is 2, the subset is the pair itself. (Contributed by Alexander van der Vekens, 9-Dec-2018.)
Assertion
Ref Expression
hash2pwpr  |-  ( ( ( # `  P
)  =  2  /\  P  e.  ~P { X ,  Y }
)  ->  P  =  { X ,  Y }
)

Proof of Theorem hash2pwpr
StepHypRef Expression
1 pwpr 4430 . . . . 5  |-  ~P { X ,  Y }  =  ( { (/) ,  { X } }  u.  { { Y } ,  { X ,  Y } } )
21eleq2i 2693 . . . 4  |-  ( P  e.  ~P { X ,  Y }  <->  P  e.  ( { (/) ,  { X } }  u.  { { Y } ,  { X ,  Y } } ) )
3 elun 3753 . . . 4  |-  ( P  e.  ( { (/) ,  { X } }  u.  { { Y } ,  { X ,  Y } } )  <->  ( P  e.  { (/) ,  { X } }  \/  P  e.  { { Y } ,  { X ,  Y } } ) )
42, 3bitri 264 . . 3  |-  ( P  e.  ~P { X ,  Y }  <->  ( P  e.  { (/) ,  { X } }  \/  P  e.  { { Y } ,  { X ,  Y } } ) )
5 fveq2 6191 . . . . . . 7  |-  ( P  =  (/)  ->  ( # `  P )  =  (
# `  (/) ) )
6 hash0 13158 . . . . . . . . 9  |-  ( # `  (/) )  =  0
76eqeq2i 2634 . . . . . . . 8  |-  ( (
# `  P )  =  ( # `  (/) )  <->  ( # `  P
)  =  0 )
8 eqeq1 2626 . . . . . . . . 9  |-  ( (
# `  P )  =  0  ->  (
( # `  P )  =  2  <->  0  = 
2 ) )
9 0ne2 11239 . . . . . . . . . 10  |-  0  =/=  2
10 eqneqall 2805 . . . . . . . . . 10  |-  ( 0  =  2  ->  (
0  =/=  2  ->  P  =  { X ,  Y } ) )
119, 10mpi 20 . . . . . . . . 9  |-  ( 0  =  2  ->  P  =  { X ,  Y } )
128, 11syl6bi 243 . . . . . . . 8  |-  ( (
# `  P )  =  0  ->  (
( # `  P )  =  2  ->  P  =  { X ,  Y } ) )
137, 12sylbi 207 . . . . . . 7  |-  ( (
# `  P )  =  ( # `  (/) )  -> 
( ( # `  P
)  =  2  ->  P  =  { X ,  Y } ) )
145, 13syl 17 . . . . . 6  |-  ( P  =  (/)  ->  ( (
# `  P )  =  2  ->  P  =  { X ,  Y } ) )
15 hashsng 13159 . . . . . . . 8  |-  ( X  e.  _V  ->  ( # `
 { X }
)  =  1 )
16 fveq2 6191 . . . . . . . . . . 11  |-  ( { X }  =  P  ->  ( # `  { X } )  =  (
# `  P )
)
1716eqcoms 2630 . . . . . . . . . 10  |-  ( P  =  { X }  ->  ( # `  { X } )  =  (
# `  P )
)
1817eqeq1d 2624 . . . . . . . . 9  |-  ( P  =  { X }  ->  ( ( # `  { X } )  =  1  <-> 
( # `  P )  =  1 ) )
19 eqeq1 2626 . . . . . . . . . 10  |-  ( (
# `  P )  =  1  ->  (
( # `  P )  =  2  <->  1  = 
2 ) )
20 1ne2 11240 . . . . . . . . . . 11  |-  1  =/=  2
21 eqneqall 2805 . . . . . . . . . . 11  |-  ( 1  =  2  ->  (
1  =/=  2  ->  P  =  { X ,  Y } ) )
2220, 21mpi 20 . . . . . . . . . 10  |-  ( 1  =  2  ->  P  =  { X ,  Y } )
2319, 22syl6bi 243 . . . . . . . . 9  |-  ( (
# `  P )  =  1  ->  (
( # `  P )  =  2  ->  P  =  { X ,  Y } ) )
2418, 23syl6bi 243 . . . . . . . 8  |-  ( P  =  { X }  ->  ( ( # `  { X } )  =  1  ->  ( ( # `  P )  =  2  ->  P  =  { X ,  Y }
) ) )
2515, 24syl5com 31 . . . . . . 7  |-  ( X  e.  _V  ->  ( P  =  { X }  ->  ( ( # `  P )  =  2  ->  P  =  { X ,  Y }
) ) )
26 snprc 4253 . . . . . . . 8  |-  ( -.  X  e.  _V  <->  { X }  =  (/) )
27 eqeq2 2633 . . . . . . . . 9  |-  ( { X }  =  (/)  ->  ( P  =  { X }  <->  P  =  (/) ) )
285, 6syl6eq 2672 . . . . . . . . . . 11  |-  ( P  =  (/)  ->  ( # `  P )  =  0 )
2928eqeq1d 2624 . . . . . . . . . 10  |-  ( P  =  (/)  ->  ( (
# `  P )  =  2  <->  0  = 
2 ) )
3029, 11syl6bi 243 . . . . . . . . 9  |-  ( P  =  (/)  ->  ( (
# `  P )  =  2  ->  P  =  { X ,  Y } ) )
3127, 30syl6bi 243 . . . . . . . 8  |-  ( { X }  =  (/)  ->  ( P  =  { X }  ->  ( (
# `  P )  =  2  ->  P  =  { X ,  Y } ) ) )
3226, 31sylbi 207 . . . . . . 7  |-  ( -.  X  e.  _V  ->  ( P  =  { X }  ->  ( ( # `  P )  =  2  ->  P  =  { X ,  Y }
) ) )
3325, 32pm2.61i 176 . . . . . 6  |-  ( P  =  { X }  ->  ( ( # `  P
)  =  2  ->  P  =  { X ,  Y } ) )
3414, 33jaoi 394 . . . . 5  |-  ( ( P  =  (/)  \/  P  =  { X } )  ->  ( ( # `  P )  =  2  ->  P  =  { X ,  Y }
) )
35 hashsng 13159 . . . . . . . 8  |-  ( Y  e.  _V  ->  ( # `
 { Y }
)  =  1 )
36 fveq2 6191 . . . . . . . . . . 11  |-  ( { Y }  =  P  ->  ( # `  { Y } )  =  (
# `  P )
)
3736eqcoms 2630 . . . . . . . . . 10  |-  ( P  =  { Y }  ->  ( # `  { Y } )  =  (
# `  P )
)
3837eqeq1d 2624 . . . . . . . . 9  |-  ( P  =  { Y }  ->  ( ( # `  { Y } )  =  1  <-> 
( # `  P )  =  1 ) )
3938, 23syl6bi 243 . . . . . . . 8  |-  ( P  =  { Y }  ->  ( ( # `  { Y } )  =  1  ->  ( ( # `  P )  =  2  ->  P  =  { X ,  Y }
) ) )
4035, 39syl5com 31 . . . . . . 7  |-  ( Y  e.  _V  ->  ( P  =  { Y }  ->  ( ( # `  P )  =  2  ->  P  =  { X ,  Y }
) ) )
41 snprc 4253 . . . . . . . 8  |-  ( -.  Y  e.  _V  <->  { Y }  =  (/) )
42 eqeq2 2633 . . . . . . . . 9  |-  ( { Y }  =  (/)  ->  ( P  =  { Y }  <->  P  =  (/) ) )
435eqeq1d 2624 . . . . . . . . . 10  |-  ( P  =  (/)  ->  ( (
# `  P )  =  2  <->  ( # `  (/) )  =  2 ) )
446eqeq1i 2627 . . . . . . . . . . 11  |-  ( (
# `  (/) )  =  2  <->  0  =  2 )
4544, 11sylbi 207 . . . . . . . . . 10  |-  ( (
# `  (/) )  =  2  ->  P  =  { X ,  Y }
)
4643, 45syl6bi 243 . . . . . . . . 9  |-  ( P  =  (/)  ->  ( (
# `  P )  =  2  ->  P  =  { X ,  Y } ) )
4742, 46syl6bi 243 . . . . . . . 8  |-  ( { Y }  =  (/)  ->  ( P  =  { Y }  ->  ( (
# `  P )  =  2  ->  P  =  { X ,  Y } ) ) )
4841, 47sylbi 207 . . . . . . 7  |-  ( -.  Y  e.  _V  ->  ( P  =  { Y }  ->  ( ( # `  P )  =  2  ->  P  =  { X ,  Y }
) ) )
4940, 48pm2.61i 176 . . . . . 6  |-  ( P  =  { Y }  ->  ( ( # `  P
)  =  2  ->  P  =  { X ,  Y } ) )
50 ax-1 6 . . . . . 6  |-  ( P  =  { X ,  Y }  ->  ( (
# `  P )  =  2  ->  P  =  { X ,  Y } ) )
5149, 50jaoi 394 . . . . 5  |-  ( ( P  =  { Y }  \/  P  =  { X ,  Y }
)  ->  ( ( # `
 P )  =  2  ->  P  =  { X ,  Y }
) )
5234, 51jaoi 394 . . . 4  |-  ( ( ( P  =  (/)  \/  P  =  { X } )  \/  ( P  =  { Y }  \/  P  =  { X ,  Y }
) )  ->  (
( # `  P )  =  2  ->  P  =  { X ,  Y } ) )
53 elpri 4197 . . . . 5  |-  ( P  e.  { (/) ,  { X } }  ->  ( P  =  (/)  \/  P  =  { X } ) )
54 elpri 4197 . . . . 5  |-  ( P  e.  { { Y } ,  { X ,  Y } }  ->  ( P  =  { Y }  \/  P  =  { X ,  Y }
) )
5553, 54orim12i 538 . . . 4  |-  ( ( P  e.  { (/) ,  { X } }  \/  P  e.  { { Y } ,  { X ,  Y } } )  ->  ( ( P  =  (/)  \/  P  =  { X } )  \/  ( P  =  { Y }  \/  P  =  { X ,  Y } ) ) )
5652, 55syl11 33 . . 3  |-  ( (
# `  P )  =  2  ->  (
( P  e.  { (/)
,  { X } }  \/  P  e.  { { Y } ,  { X ,  Y } } )  ->  P  =  { X ,  Y } ) )
574, 56syl5bi 232 . 2  |-  ( (
# `  P )  =  2  ->  ( P  e.  ~P { X ,  Y }  ->  P  =  { X ,  Y } ) )
5857imp 445 1  |-  ( ( ( # `  P
)  =  2  /\  P  e.  ~P { X ,  Y }
)  ->  P  =  { X ,  Y }
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    u. cun 3572   (/)c0 3915   ~Pcpw 4158   {csn 4177   {cpr 4179   ` cfv 5888   0cc0 9936   1c1 9937   2c2 11070   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by:  pr2pwpr  13261
  Copyright terms: Public domain W3C validator