Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhval Structured version   Visualization version   Unicode version

Theorem qqhval 30018
Description: Value of the canonical homormorphism from the rational number to a field. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Hypotheses
Ref Expression
qqhval.1  |-  ./  =  (/r
`  R )
qqhval.2  |-  .1.  =  ( 1r `  R )
qqhval.3  |-  L  =  ( ZRHom `  R
)
Assertion
Ref Expression
qqhval  |-  ( R  e.  _V  ->  (QQHom `  R )  =  ran  ( x  e.  ZZ ,  y  e.  ( `' L " (Unit `  R ) )  |->  <.
( x  /  y
) ,  ( ( L `  x ) 
./  ( L `  y ) ) >.
) )
Distinct variable groups:    x, y, R    y, L
Allowed substitution hints:    ./ ( x, y)    .1. ( x, y)    L( x)

Proof of Theorem qqhval
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 eqidd 2623 . . . 4  |-  ( f  =  R  ->  ZZ  =  ZZ )
2 fveq2 6191 . . . . . . 7  |-  ( f  =  R  ->  ( ZRHom `  f )  =  ( ZRHom `  R
) )
3 qqhval.3 . . . . . . 7  |-  L  =  ( ZRHom `  R
)
42, 3syl6eqr 2674 . . . . . 6  |-  ( f  =  R  ->  ( ZRHom `  f )  =  L )
54cnveqd 5298 . . . . 5  |-  ( f  =  R  ->  `' ( ZRHom `  f )  =  `' L )
6 fveq2 6191 . . . . 5  |-  ( f  =  R  ->  (Unit `  f )  =  (Unit `  R ) )
75, 6imaeq12d 5467 . . . 4  |-  ( f  =  R  ->  ( `' ( ZRHom `  f ) " (Unit `  f ) )  =  ( `' L "
(Unit `  R )
) )
8 fveq2 6191 . . . . . . 7  |-  ( f  =  R  ->  (/r `  f )  =  (/r `  R ) )
9 qqhval.1 . . . . . . 7  |-  ./  =  (/r
`  R )
108, 9syl6eqr 2674 . . . . . 6  |-  ( f  =  R  ->  (/r `  f )  =  ./  )
114fveq1d 6193 . . . . . 6  |-  ( f  =  R  ->  (
( ZRHom `  f
) `  x )  =  ( L `  x ) )
124fveq1d 6193 . . . . . 6  |-  ( f  =  R  ->  (
( ZRHom `  f
) `  y )  =  ( L `  y ) )
1310, 11, 12oveq123d 6671 . . . . 5  |-  ( f  =  R  ->  (
( ( ZRHom `  f ) `  x
) (/r `  f ) ( ( ZRHom `  f
) `  y )
)  =  ( ( L `  x ) 
./  ( L `  y ) ) )
1413opeq2d 4409 . . . 4  |-  ( f  =  R  ->  <. (
x  /  y ) ,  ( ( ( ZRHom `  f ) `  x ) (/r `  f
) ( ( ZRHom `  f ) `  y
) ) >.  =  <. ( x  /  y ) ,  ( ( L `
 x )  ./  ( L `  y ) ) >. )
151, 7, 14mpt2eq123dv 6717 . . 3  |-  ( f  =  R  ->  (
x  e.  ZZ , 
y  e.  ( `' ( ZRHom `  f
) " (Unit `  f ) )  |->  <.
( x  /  y
) ,  ( ( ( ZRHom `  f
) `  x )
(/r `  f ) ( ( ZRHom `  f
) `  y )
) >. )  =  ( x  e.  ZZ , 
y  e.  ( `' L " (Unit `  R ) )  |->  <.
( x  /  y
) ,  ( ( L `  x ) 
./  ( L `  y ) ) >.
) )
1615rneqd 5353 . 2  |-  ( f  =  R  ->  ran  ( x  e.  ZZ ,  y  e.  ( `' ( ZRHom `  f ) " (Unit `  f ) )  |->  <.
( x  /  y
) ,  ( ( ( ZRHom `  f
) `  x )
(/r `  f ) ( ( ZRHom `  f
) `  y )
) >. )  =  ran  ( x  e.  ZZ ,  y  e.  ( `' L " (Unit `  R ) )  |->  <.
( x  /  y
) ,  ( ( L `  x ) 
./  ( L `  y ) ) >.
) )
17 df-qqh 30017 . 2  |- QQHom  =  ( f  e.  _V  |->  ran  ( x  e.  ZZ ,  y  e.  ( `' ( ZRHom `  f ) " (Unit `  f ) )  |->  <.
( x  /  y
) ,  ( ( ( ZRHom `  f
) `  x )
(/r `  f ) ( ( ZRHom `  f
) `  y )
) >. ) )
18 zex 11386 . . . 4  |-  ZZ  e.  _V
19 fvex 6201 . . . . . . 7  |-  ( ZRHom `  R )  e.  _V
203, 19eqeltri 2697 . . . . . 6  |-  L  e. 
_V
2120cnvex 7113 . . . . 5  |-  `' L  e.  _V
22 imaexg 7103 . . . . 5  |-  ( `' L  e.  _V  ->  ( `' L " (Unit `  R ) )  e. 
_V )
2321, 22ax-mp 5 . . . 4  |-  ( `' L " (Unit `  R ) )  e. 
_V
2418, 23mpt2ex 7247 . . 3  |-  ( x  e.  ZZ ,  y  e.  ( `' L " (Unit `  R )
)  |->  <. ( x  / 
y ) ,  ( ( L `  x
)  ./  ( L `  y ) ) >.
)  e.  _V
2524rnex 7100 . 2  |-  ran  (
x  e.  ZZ , 
y  e.  ( `' L " (Unit `  R ) )  |->  <.
( x  /  y
) ,  ( ( L `  x ) 
./  ( L `  y ) ) >.
)  e.  _V
2616, 17, 25fvmpt 6282 1  |-  ( R  e.  _V  ->  (QQHom `  R )  =  ran  ( x  e.  ZZ ,  y  e.  ( `' L " (Unit `  R ) )  |->  <.
( x  /  y
) ,  ( ( L `  x ) 
./  ( L `  y ) ) >.
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183   `'ccnv 5113   ran crn 5115   "cima 5117   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    / cdiv 10684   ZZcz 11377   1rcur 18501  Unitcui 18639  /rcdvr 18682   ZRHomczrh 19848  QQHomcqqh 30016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-neg 10269  df-z 11378  df-qqh 30017
This theorem is referenced by:  qqhval2  30026
  Copyright terms: Public domain W3C validator