| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qtopval2 | Structured version Visualization version Unicode version | ||
| Description: Value of the quotient
topology function when |
| Ref | Expression |
|---|---|
| qtopval.1 |
|
| Ref | Expression |
|---|---|
| qtopval2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1061 |
. . 3
| |
| 2 | fof 6115 |
. . . . 5
| |
| 3 | 2 | 3ad2ant2 1083 |
. . . 4
|
| 4 | qtopval.1 |
. . . . . 6
| |
| 5 | uniexg 6955 |
. . . . . . 7
| |
| 6 | 5 | 3ad2ant1 1082 |
. . . . . 6
|
| 7 | 4, 6 | syl5eqel 2705 |
. . . . 5
|
| 8 | simp3 1063 |
. . . . 5
| |
| 9 | 7, 8 | ssexd 4805 |
. . . 4
|
| 10 | fex 6490 |
. . . 4
| |
| 11 | 3, 9, 10 | syl2anc 693 |
. . 3
|
| 12 | 4 | qtopval 21498 |
. . 3
|
| 13 | 1, 11, 12 | syl2anc 693 |
. 2
|
| 14 | imassrn 5477 |
. . . . . 6
| |
| 15 | forn 6118 |
. . . . . . 7
| |
| 16 | 15 | 3ad2ant2 1083 |
. . . . . 6
|
| 17 | 14, 16 | syl5sseq 3653 |
. . . . 5
|
| 18 | foima 6120 |
. . . . . . 7
| |
| 19 | 18 | 3ad2ant2 1083 |
. . . . . 6
|
| 20 | imass2 5501 |
. . . . . . 7
| |
| 21 | 8, 20 | syl 17 |
. . . . . 6
|
| 22 | 19, 21 | eqsstr3d 3640 |
. . . . 5
|
| 23 | 17, 22 | eqssd 3620 |
. . . 4
|
| 24 | 23 | pweqd 4163 |
. . 3
|
| 25 | cnvimass 5485 |
. . . . . . 7
| |
| 26 | fdm 6051 |
. . . . . . . 8
| |
| 27 | 3, 26 | syl 17 |
. . . . . . 7
|
| 28 | 25, 27 | syl5sseq 3653 |
. . . . . 6
|
| 29 | 28, 8 | sstrd 3613 |
. . . . 5
|
| 30 | df-ss 3588 |
. . . . 5
| |
| 31 | 29, 30 | sylib 208 |
. . . 4
|
| 32 | 31 | eleq1d 2686 |
. . 3
|
| 33 | 24, 32 | rabeqbidv 3195 |
. 2
|
| 34 | 13, 33 | eqtrd 2656 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-qtop 16167 |
| This theorem is referenced by: elqtop 21500 |
| Copyright terms: Public domain | W3C validator |