MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopval2 Structured version   Visualization version   Unicode version

Theorem qtopval2 21499
Description: Value of the quotient topology function when  F is a function on the base set. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypothesis
Ref Expression
qtopval.1  |-  X  = 
U. J
Assertion
Ref Expression
qtopval2  |-  ( ( J  e.  V  /\  F : Z -onto-> Y  /\  Z  C_  X )  -> 
( J qTop  F )  =  { s  e.  ~P Y  |  ( `' F " s )  e.  J } )
Distinct variable groups:    F, s    J, s    V, s    Y, s    Z, s    X, s

Proof of Theorem qtopval2
StepHypRef Expression
1 simp1 1061 . . 3  |-  ( ( J  e.  V  /\  F : Z -onto-> Y  /\  Z  C_  X )  ->  J  e.  V )
2 fof 6115 . . . . 5  |-  ( F : Z -onto-> Y  ->  F : Z --> Y )
323ad2ant2 1083 . . . 4  |-  ( ( J  e.  V  /\  F : Z -onto-> Y  /\  Z  C_  X )  ->  F : Z --> Y )
4 qtopval.1 . . . . . 6  |-  X  = 
U. J
5 uniexg 6955 . . . . . . 7  |-  ( J  e.  V  ->  U. J  e.  _V )
653ad2ant1 1082 . . . . . 6  |-  ( ( J  e.  V  /\  F : Z -onto-> Y  /\  Z  C_  X )  ->  U. J  e.  _V )
74, 6syl5eqel 2705 . . . . 5  |-  ( ( J  e.  V  /\  F : Z -onto-> Y  /\  Z  C_  X )  ->  X  e.  _V )
8 simp3 1063 . . . . 5  |-  ( ( J  e.  V  /\  F : Z -onto-> Y  /\  Z  C_  X )  ->  Z  C_  X )
97, 8ssexd 4805 . . . 4  |-  ( ( J  e.  V  /\  F : Z -onto-> Y  /\  Z  C_  X )  ->  Z  e.  _V )
10 fex 6490 . . . 4  |-  ( ( F : Z --> Y  /\  Z  e.  _V )  ->  F  e.  _V )
113, 9, 10syl2anc 693 . . 3  |-  ( ( J  e.  V  /\  F : Z -onto-> Y  /\  Z  C_  X )  ->  F  e.  _V )
124qtopval 21498 . . 3  |-  ( ( J  e.  V  /\  F  e.  _V )  ->  ( J qTop  F )  =  { s  e. 
~P ( F " X )  |  ( ( `' F "
s )  i^i  X
)  e.  J }
)
131, 11, 12syl2anc 693 . 2  |-  ( ( J  e.  V  /\  F : Z -onto-> Y  /\  Z  C_  X )  -> 
( J qTop  F )  =  { s  e.  ~P ( F " X )  |  ( ( `' F " s )  i^i  X )  e.  J } )
14 imassrn 5477 . . . . . 6  |-  ( F
" X )  C_  ran  F
15 forn 6118 . . . . . . 7  |-  ( F : Z -onto-> Y  ->  ran  F  =  Y )
16153ad2ant2 1083 . . . . . 6  |-  ( ( J  e.  V  /\  F : Z -onto-> Y  /\  Z  C_  X )  ->  ran  F  =  Y )
1714, 16syl5sseq 3653 . . . . 5  |-  ( ( J  e.  V  /\  F : Z -onto-> Y  /\  Z  C_  X )  -> 
( F " X
)  C_  Y )
18 foima 6120 . . . . . . 7  |-  ( F : Z -onto-> Y  -> 
( F " Z
)  =  Y )
19183ad2ant2 1083 . . . . . 6  |-  ( ( J  e.  V  /\  F : Z -onto-> Y  /\  Z  C_  X )  -> 
( F " Z
)  =  Y )
20 imass2 5501 . . . . . . 7  |-  ( Z 
C_  X  ->  ( F " Z )  C_  ( F " X ) )
218, 20syl 17 . . . . . 6  |-  ( ( J  e.  V  /\  F : Z -onto-> Y  /\  Z  C_  X )  -> 
( F " Z
)  C_  ( F " X ) )
2219, 21eqsstr3d 3640 . . . . 5  |-  ( ( J  e.  V  /\  F : Z -onto-> Y  /\  Z  C_  X )  ->  Y  C_  ( F " X ) )
2317, 22eqssd 3620 . . . 4  |-  ( ( J  e.  V  /\  F : Z -onto-> Y  /\  Z  C_  X )  -> 
( F " X
)  =  Y )
2423pweqd 4163 . . 3  |-  ( ( J  e.  V  /\  F : Z -onto-> Y  /\  Z  C_  X )  ->  ~P ( F " X
)  =  ~P Y
)
25 cnvimass 5485 . . . . . . 7  |-  ( `' F " s ) 
C_  dom  F
26 fdm 6051 . . . . . . . 8  |-  ( F : Z --> Y  ->  dom  F  =  Z )
273, 26syl 17 . . . . . . 7  |-  ( ( J  e.  V  /\  F : Z -onto-> Y  /\  Z  C_  X )  ->  dom  F  =  Z )
2825, 27syl5sseq 3653 . . . . . 6  |-  ( ( J  e.  V  /\  F : Z -onto-> Y  /\  Z  C_  X )  -> 
( `' F "
s )  C_  Z
)
2928, 8sstrd 3613 . . . . 5  |-  ( ( J  e.  V  /\  F : Z -onto-> Y  /\  Z  C_  X )  -> 
( `' F "
s )  C_  X
)
30 df-ss 3588 . . . . 5  |-  ( ( `' F " s ) 
C_  X  <->  ( ( `' F " s )  i^i  X )  =  ( `' F "
s ) )
3129, 30sylib 208 . . . 4  |-  ( ( J  e.  V  /\  F : Z -onto-> Y  /\  Z  C_  X )  -> 
( ( `' F " s )  i^i  X
)  =  ( `' F " s ) )
3231eleq1d 2686 . . 3  |-  ( ( J  e.  V  /\  F : Z -onto-> Y  /\  Z  C_  X )  -> 
( ( ( `' F " s )  i^i  X )  e.  J  <->  ( `' F " s )  e.  J
) )
3324, 32rabeqbidv 3195 . 2  |-  ( ( J  e.  V  /\  F : Z -onto-> Y  /\  Z  C_  X )  ->  { s  e.  ~P ( F " X )  |  ( ( `' F " s )  i^i  X )  e.  J }  =  {
s  e.  ~P Y  |  ( `' F " s )  e.  J } )
3413, 33eqtrd 2656 1  |-  ( ( J  e.  V  /\  F : Z -onto-> Y  /\  Z  C_  X )  -> 
( J qTop  F )  =  { s  e.  ~P Y  |  ( `' F " s )  e.  J } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117   -->wf 5884   -onto->wfo 5886  (class class class)co 6650   qTop cqtop 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-qtop 16167
This theorem is referenced by:  elqtop  21500
  Copyright terms: Public domain W3C validator