MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppsnop Structured version   Visualization version   Unicode version

Theorem suppsnop 7309
Description: The support of a singleton of an ordered pair. (Contributed by AV, 12-Apr-2019.)
Hypothesis
Ref Expression
suppsnop.f  |-  F  =  { <. X ,  Y >. }
Assertion
Ref Expression
suppsnop  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  U )  ->  ( F supp  Z )  =  if ( Y  =  Z ,  (/) ,  { X } ) )

Proof of Theorem suppsnop
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 f1osng 6177 . . . . . . 7  |-  ( ( X  e.  V  /\  Y  e.  W )  ->  { <. X ,  Y >. } : { X }
-1-1-onto-> { Y } )
2 f1of 6137 . . . . . . 7  |-  ( {
<. X ,  Y >. } : { X } -1-1-onto-> { Y }  ->  { <. X ,  Y >. } : { X } --> { Y } )
31, 2syl 17 . . . . . 6  |-  ( ( X  e.  V  /\  Y  e.  W )  ->  { <. X ,  Y >. } : { X }
--> { Y } )
433adant3 1081 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  U )  ->  { <. X ,  Y >. } : { X }
--> { Y } )
5 suppsnop.f . . . . . 6  |-  F  =  { <. X ,  Y >. }
65feq1i 6036 . . . . 5  |-  ( F : { X } --> { Y }  <->  { <. X ,  Y >. } : { X } --> { Y }
)
74, 6sylibr 224 . . . 4  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  U )  ->  F : { X }
--> { Y } )
8 snex 4908 . . . . 5  |-  { X }  e.  _V
98a1i 11 . . . 4  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  U )  ->  { X }  e.  _V )
10 fex 6490 . . . 4  |-  ( ( F : { X }
--> { Y }  /\  { X }  e.  _V )  ->  F  e.  _V )
117, 9, 10syl2anc 693 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  U )  ->  F  e.  _V )
12 simp3 1063 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  U )  ->  Z  e.  U )
13 suppval 7297 . . 3  |-  ( ( F  e.  _V  /\  Z  e.  U )  ->  ( F supp  Z )  =  { x  e. 
dom  F  |  ( F " { x }
)  =/=  { Z } } )
1411, 12, 13syl2anc 693 . 2  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  U )  ->  ( F supp  Z )  =  { x  e. 
dom  F  |  ( F " { x }
)  =/=  { Z } } )
155a1i 11 . . . . . 6  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  U )  ->  F  =  { <. X ,  Y >. } )
1615dmeqd 5326 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  U )  ->  dom  F  =  dom  {
<. X ,  Y >. } )
17 dmsnopg 5606 . . . . . 6  |-  ( Y  e.  W  ->  dom  {
<. X ,  Y >. }  =  { X }
)
18173ad2ant2 1083 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  U )  ->  dom  { <. X ,  Y >. }  =  { X } )
1916, 18eqtrd 2656 . . . 4  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  U )  ->  dom  F  =  { X } )
20 rabeq 3192 . . . 4  |-  ( dom 
F  =  { X }  ->  { x  e. 
dom  F  |  ( F " { x }
)  =/=  { Z } }  =  {
x  e.  { X }  |  ( F " { x } )  =/=  { Z } } )
2119, 20syl 17 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  U )  ->  { x  e.  dom  F  |  ( F " { x } )  =/=  { Z } }  =  { x  e.  { X }  | 
( F " {
x } )  =/= 
{ Z } }
)
22 sneq 4187 . . . . . 6  |-  ( x  =  X  ->  { x }  =  { X } )
2322imaeq2d 5466 . . . . 5  |-  ( x  =  X  ->  ( F " { x }
)  =  ( F
" { X }
) )
2423neeq1d 2853 . . . 4  |-  ( x  =  X  ->  (
( F " {
x } )  =/= 
{ Z }  <->  ( F " { X } )  =/=  { Z }
) )
2524rabsnif 4258 . . 3  |-  { x  e.  { X }  | 
( F " {
x } )  =/= 
{ Z } }  =  if ( ( F
" { X }
)  =/=  { Z } ,  { X } ,  (/) )
2621, 25syl6eq 2672 . 2  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  U )  ->  { x  e.  dom  F  |  ( F " { x } )  =/=  { Z } }  =  if (
( F " { X } )  =/=  { Z } ,  { X } ,  (/) ) )
27 fnsng 5938 . . . . . . . . 9  |-  ( ( X  e.  V  /\  Y  e.  W )  ->  { <. X ,  Y >. }  Fn  { X } )
28273adant3 1081 . . . . . . . 8  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  U )  ->  { <. X ,  Y >. }  Fn  { X } )
295eqcomi 2631 . . . . . . . . . 10  |-  { <. X ,  Y >. }  =  F
3029a1i 11 . . . . . . . . 9  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  U )  ->  { <. X ,  Y >. }  =  F )
3130fneq1d 5981 . . . . . . . 8  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  U )  ->  ( { <. X ,  Y >. }  Fn  { X }  <->  F  Fn  { X } ) )
3228, 31mpbid 222 . . . . . . 7  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  U )  ->  F  Fn  { X } )
33 snidg 4206 . . . . . . . 8  |-  ( X  e.  V  ->  X  e.  { X } )
34333ad2ant1 1082 . . . . . . 7  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  U )  ->  X  e.  { X } )
35 fnsnfv 6258 . . . . . . . 8  |-  ( ( F  Fn  { X }  /\  X  e.  { X } )  ->  { ( F `  X ) }  =  ( F
" { X }
) )
3635eqcomd 2628 . . . . . . 7  |-  ( ( F  Fn  { X }  /\  X  e.  { X } )  ->  ( F " { X }
)  =  { ( F `  X ) } )
3732, 34, 36syl2anc 693 . . . . . 6  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  U )  ->  ( F " { X } )  =  {
( F `  X
) } )
3837neeq1d 2853 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  U )  ->  ( ( F " { X } )  =/= 
{ Z }  <->  { ( F `  X ) }  =/=  { Z }
) )
395fveq1i 6192 . . . . . . . 8  |-  ( F `
 X )  =  ( { <. X ,  Y >. } `  X
)
40 fvsng 6447 . . . . . . . . 9  |-  ( ( X  e.  V  /\  Y  e.  W )  ->  ( { <. X ,  Y >. } `  X
)  =  Y )
41403adant3 1081 . . . . . . . 8  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  U )  ->  ( { <. X ,  Y >. } `  X
)  =  Y )
4239, 41syl5eq 2668 . . . . . . 7  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  U )  ->  ( F `  X
)  =  Y )
4342sneqd 4189 . . . . . 6  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  U )  ->  { ( F `  X ) }  =  { Y } )
4443neeq1d 2853 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  U )  ->  ( { ( F `
 X ) }  =/=  { Z }  <->  { Y }  =/=  { Z } ) )
45 sneqbg 4374 . . . . . . 7  |-  ( Y  e.  W  ->  ( { Y }  =  { Z }  <->  Y  =  Z
) )
46453ad2ant2 1083 . . . . . 6  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  U )  ->  ( { Y }  =  { Z }  <->  Y  =  Z ) )
4746necon3abid 2830 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  U )  ->  ( { Y }  =/=  { Z }  <->  -.  Y  =  Z ) )
4838, 44, 473bitrd 294 . . . 4  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  U )  ->  ( ( F " { X } )  =/= 
{ Z }  <->  -.  Y  =  Z ) )
4948ifbid 4108 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  U )  ->  if ( ( F
" { X }
)  =/=  { Z } ,  { X } ,  (/) )  =  if ( -.  Y  =  Z ,  { X } ,  (/) ) )
50 ifnot 4133 . . 3  |-  if ( -.  Y  =  Z ,  { X } ,  (/) )  =  if ( Y  =  Z ,  (/) ,  { X } )
5149, 50syl6eq 2672 . 2  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  U )  ->  if ( ( F
" { X }
)  =/=  { Z } ,  { X } ,  (/) )  =  if ( Y  =  Z ,  (/) ,  { X } ) )
5214, 26, 513eqtrd 2660 1  |-  ( ( X  e.  V  /\  Y  e.  W  /\  Z  e.  U )  ->  ( F supp  Z )  =  if ( Y  =  Z ,  (/) ,  { X } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   _Vcvv 3200   (/)c0 3915   ifcif 4086   {csn 4177   <.cop 4183   dom cdm 5114   "cima 5117    Fn wfn 5883   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   supp csupp 7295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-supp 7296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator