MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1hevtxdg1 Structured version   Visualization version   Unicode version

Theorem 1hevtxdg1 26402
Description: The vertex degree of vertex  D in a graph  G with only one hyperedge  E (not being a loop) is 1 if  D is incident with the edge  E. (Contributed by AV, 2-Mar-2021.) (Proof shortened by AV, 17-Apr-2021.)
Hypotheses
Ref Expression
1hevtxdg0.i  |-  ( ph  ->  (iEdg `  G )  =  { <. A ,  E >. } )
1hevtxdg0.v  |-  ( ph  ->  (Vtx `  G )  =  V )
1hevtxdg0.a  |-  ( ph  ->  A  e.  X )
1hevtxdg0.d  |-  ( ph  ->  D  e.  V )
1hevtxdg1.e  |-  ( ph  ->  E  e.  ~P V
)
1hevtxdg1.n  |-  ( ph  ->  D  e.  E )
1hevtxdg1.l  |-  ( ph  ->  2  <_  ( # `  E
) )
Assertion
Ref Expression
1hevtxdg1  |-  ( ph  ->  ( (VtxDeg `  G
) `  D )  =  1 )

Proof of Theorem 1hevtxdg1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 1hevtxdg0.i . . . 4  |-  ( ph  ->  (iEdg `  G )  =  { <. A ,  E >. } )
21dmeqd 5326 . . 3  |-  ( ph  ->  dom  (iEdg `  G
)  =  dom  { <. A ,  E >. } )
3 1hevtxdg1.e . . . 4  |-  ( ph  ->  E  e.  ~P V
)
4 dmsnopg 5606 . . . 4  |-  ( E  e.  ~P V  ->  dom  { <. A ,  E >. }  =  { A } )
53, 4syl 17 . . 3  |-  ( ph  ->  dom  { <. A ,  E >. }  =  { A } )
62, 5eqtrd 2656 . 2  |-  ( ph  ->  dom  (iEdg `  G
)  =  { A } )
7 1hevtxdg0.a . . . . . . 7  |-  ( ph  ->  A  e.  X )
8 1hevtxdg0.v . . . . . . . . . 10  |-  ( ph  ->  (Vtx `  G )  =  V )
98pweqd 4163 . . . . . . . . 9  |-  ( ph  ->  ~P (Vtx `  G
)  =  ~P V
)
103, 9eleqtrrd 2704 . . . . . . . 8  |-  ( ph  ->  E  e.  ~P (Vtx `  G ) )
11 1hevtxdg1.l . . . . . . . 8  |-  ( ph  ->  2  <_  ( # `  E
) )
12 fveq2 6191 . . . . . . . . . 10  |-  ( x  =  E  ->  ( # `
 x )  =  ( # `  E
) )
1312breq2d 4665 . . . . . . . . 9  |-  ( x  =  E  ->  (
2  <_  ( # `  x
)  <->  2  <_  ( # `
 E ) ) )
1413elrab 3363 . . . . . . . 8  |-  ( E  e.  { x  e. 
~P (Vtx `  G
)  |  2  <_ 
( # `  x ) }  <->  ( E  e. 
~P (Vtx `  G
)  /\  2  <_  (
# `  E )
) )
1510, 11, 14sylanbrc 698 . . . . . . 7  |-  ( ph  ->  E  e.  { x  e.  ~P (Vtx `  G
)  |  2  <_ 
( # `  x ) } )
167, 15fsnd 6179 . . . . . 6  |-  ( ph  ->  { <. A ,  E >. } : { A }
--> { x  e.  ~P (Vtx `  G )  |  2  <_  ( # `  x
) } )
1716adantr 481 . . . . 5  |-  ( (
ph  /\  dom  (iEdg `  G )  =  { A } )  ->  { <. A ,  E >. } : { A } --> { x  e.  ~P (Vtx `  G
)  |  2  <_ 
( # `  x ) } )
181adantr 481 . . . . . 6  |-  ( (
ph  /\  dom  (iEdg `  G )  =  { A } )  ->  (iEdg `  G )  =  { <. A ,  E >. } )
19 simpr 477 . . . . . 6  |-  ( (
ph  /\  dom  (iEdg `  G )  =  { A } )  ->  dom  (iEdg `  G )  =  { A } )
2018, 19feq12d 6033 . . . . 5  |-  ( (
ph  /\  dom  (iEdg `  G )  =  { A } )  ->  (
(iEdg `  G ) : dom  (iEdg `  G
) --> { x  e. 
~P (Vtx `  G
)  |  2  <_ 
( # `  x ) }  <->  { <. A ,  E >. } : { A }
--> { x  e.  ~P (Vtx `  G )  |  2  <_  ( # `  x
) } ) )
2117, 20mpbird 247 . . . 4  |-  ( (
ph  /\  dom  (iEdg `  G )  =  { A } )  ->  (iEdg `  G ) : dom  (iEdg `  G ) --> { x  e.  ~P (Vtx `  G )  |  2  <_  ( # `  x
) } )
22 1hevtxdg0.d . . . . . 6  |-  ( ph  ->  D  e.  V )
2322, 8eleqtrrd 2704 . . . . 5  |-  ( ph  ->  D  e.  (Vtx `  G ) )
2423adantr 481 . . . 4  |-  ( (
ph  /\  dom  (iEdg `  G )  =  { A } )  ->  D  e.  (Vtx `  G )
)
25 eqid 2622 . . . . 5  |-  (Vtx `  G )  =  (Vtx
`  G )
26 eqid 2622 . . . . 5  |-  (iEdg `  G )  =  (iEdg `  G )
27 eqid 2622 . . . . 5  |-  dom  (iEdg `  G )  =  dom  (iEdg `  G )
28 eqid 2622 . . . . 5  |-  (VtxDeg `  G )  =  (VtxDeg `  G )
2925, 26, 27, 28vtxdlfgrval 26381 . . . 4  |-  ( ( (iEdg `  G ) : dom  (iEdg `  G
) --> { x  e. 
~P (Vtx `  G
)  |  2  <_ 
( # `  x ) }  /\  D  e.  (Vtx `  G )
)  ->  ( (VtxDeg `  G ) `  D
)  =  ( # `  { x  e.  dom  (iEdg `  G )  |  D  e.  ( (iEdg `  G ) `  x
) } ) )
3021, 24, 29syl2anc 693 . . 3  |-  ( (
ph  /\  dom  (iEdg `  G )  =  { A } )  ->  (
(VtxDeg `  G ) `  D )  =  (
# `  { x  e.  dom  (iEdg `  G
)  |  D  e.  ( (iEdg `  G
) `  x ) } ) )
31 rabeq 3192 . . . . 5  |-  ( dom  (iEdg `  G )  =  { A }  ->  { x  e.  dom  (iEdg `  G )  |  D  e.  ( (iEdg `  G
) `  x ) }  =  { x  e.  { A }  |  D  e.  ( (iEdg `  G ) `  x
) } )
3231adantl 482 . . . 4  |-  ( (
ph  /\  dom  (iEdg `  G )  =  { A } )  ->  { x  e.  dom  (iEdg `  G
)  |  D  e.  ( (iEdg `  G
) `  x ) }  =  { x  e.  { A }  |  D  e.  ( (iEdg `  G ) `  x
) } )
3332fveq2d 6195 . . 3  |-  ( (
ph  /\  dom  (iEdg `  G )  =  { A } )  ->  ( # `
 { x  e. 
dom  (iEdg `  G )  |  D  e.  (
(iEdg `  G ) `  x ) } )  =  ( # `  {
x  e.  { A }  |  D  e.  ( (iEdg `  G ) `  x ) } ) )
34 fveq2 6191 . . . . . . . . 9  |-  ( x  =  A  ->  (
(iEdg `  G ) `  x )  =  ( (iEdg `  G ) `  A ) )
3534eleq2d 2687 . . . . . . . 8  |-  ( x  =  A  ->  ( D  e.  ( (iEdg `  G ) `  x
)  <->  D  e.  (
(iEdg `  G ) `  A ) ) )
3635rabsnif 4258 . . . . . . 7  |-  { x  e.  { A }  |  D  e.  ( (iEdg `  G ) `  x
) }  =  if ( D  e.  ( (iEdg `  G ) `  A ) ,  { A } ,  (/) )
37 1hevtxdg1.n . . . . . . . . 9  |-  ( ph  ->  D  e.  E )
381fveq1d 6193 . . . . . . . . . 10  |-  ( ph  ->  ( (iEdg `  G
) `  A )  =  ( { <. A ,  E >. } `  A ) )
39 fvsng 6447 . . . . . . . . . . 11  |-  ( ( A  e.  X  /\  E  e.  ~P V
)  ->  ( { <. A ,  E >. } `
 A )  =  E )
407, 3, 39syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  ( { <. A ,  E >. } `  A
)  =  E )
4138, 40eqtrd 2656 . . . . . . . . 9  |-  ( ph  ->  ( (iEdg `  G
) `  A )  =  E )
4237, 41eleqtrrd 2704 . . . . . . . 8  |-  ( ph  ->  D  e.  ( (iEdg `  G ) `  A
) )
4342iftrued 4094 . . . . . . 7  |-  ( ph  ->  if ( D  e.  ( (iEdg `  G
) `  A ) ,  { A } ,  (/) )  =  { A } )
4436, 43syl5eq 2668 . . . . . 6  |-  ( ph  ->  { x  e.  { A }  |  D  e.  ( (iEdg `  G
) `  x ) }  =  { A } )
4544fveq2d 6195 . . . . 5  |-  ( ph  ->  ( # `  {
x  e.  { A }  |  D  e.  ( (iEdg `  G ) `  x ) } )  =  ( # `  { A } ) )
46 hashsng 13159 . . . . . 6  |-  ( A  e.  X  ->  ( # `
 { A }
)  =  1 )
477, 46syl 17 . . . . 5  |-  ( ph  ->  ( # `  { A } )  =  1 )
4845, 47eqtrd 2656 . . . 4  |-  ( ph  ->  ( # `  {
x  e.  { A }  |  D  e.  ( (iEdg `  G ) `  x ) } )  =  1 )
4948adantr 481 . . 3  |-  ( (
ph  /\  dom  (iEdg `  G )  =  { A } )  ->  ( # `
 { x  e. 
{ A }  |  D  e.  ( (iEdg `  G ) `  x
) } )  =  1 )
5030, 33, 493eqtrd 2660 . 2  |-  ( (
ph  /\  dom  (iEdg `  G )  =  { A } )  ->  (
(VtxDeg `  G ) `  D )  =  1 )
516, 50mpdan 702 1  |-  ( ph  ->  ( (VtxDeg `  G
) `  D )  =  1 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   (/)c0 3915   ifcif 4086   ~Pcpw 4158   {csn 4177   <.cop 4183   class class class wbr 4653   dom cdm 5114   -->wf 5884   ` cfv 5888   1c1 9937    <_ cle 10075   2c2 11070   #chash 13117  Vtxcvtx 25874  iEdgciedg 25875  VtxDegcvtxdg 26361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-xadd 11947  df-fz 12327  df-hash 13118  df-vtxdg 26362
This theorem is referenced by:  1hegrvtxdg1  26403  p1evtxdp1  26410
  Copyright terms: Public domain W3C validator